Ophidian envenomation strategies and the role of purines

被引:235
作者
Aird, SD [1 ]
机构
[1] Univ Estuadual Ceara, Lab Toxinas Nat, BR-60740000 Fortaleza, Ceara, Brazil
关键词
snake venoms; envenomation; purines; adenosine; guanosine; inosine; hypotension; neurotoxicity; paralysis; digestion; hemostasis; nitric oxide production; phosphodiesterases; 5 '-nuclcotidase; phosphomonoesterase; L-amino acid oxidase; leucine aminopeptidase; nerve growth factor; dipeptidyl peptidae IV; heparinase; hyaluronidase; hemorrhagic proteases; NAD glycohydrolase;
D O I
10.1016/S0041-0101(01)00232-X
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Snake envenomation employs three well integrated strategies: prey immobilization via hypotension, prey immobilization via Paralysis, and prey digestion. Purines (adenosine, guanosinc and inosine) evidently play a central role in the envenomation strategies of most advanced snakes. Purines constitute the perfect multifunctional toxins, participating simultaneously in all three envenomation strategies. Because they are endogenous regulatory compounds in all vertebrates, it is impossible for any prey organism to develop resistance to them. Purine generation from endogenous precursors in the prey explains the presence of many hitherto unexplained enzyme activities in snake venoms: 5'-nucleotidase, endonucleases (including ribonuclease), phosphodiesterase, ATPase, ADPase, phosphomonoesterase, and NADase. Phospholipases, A(2) cytotoxins, myotoxins, and heparinase also participate in purine liberation, in addition to their better known functions, Adenosine contributes to prey immobilization by activation of neuronal adenosine A(1) receptors, suppressing acetylcholine release from motor neurons and excitatory neurotransmitters from central sites. It also exacerbates venom-induced hypotension by activating A(2) receptors in the vasculature. Adenosine and inosine both activate mast cell A(3) receptors, liberating vasoactive substances and increasing vascular permeability. Guanosine probably contributes to hypotension, by augmenting vascular endothelial cGMP levels via an unknown mechanism. Novel functions are suggested for toxins that act upon blood coagulation factors, including nitric oxide production, using the prey's carboxypeptidases. Leucine aminopeptidase may link venom hemorrhagic metalloproteases and endogenous chymotrypsin-like proteases with venom L-amino acid oxidase (LAO), accelerating the latter. The primary function of LAO is probably to promote prey hypotension by activating soluble guanylate cyclase in the presence of superoxide dismutase. LAO's apoptotic activity, too slow to be relevant to prey capture. is undoubtedly secondary and probably serves principally a digestive function. It is concluded that the principal function of L-type Ca2+ channel antagonists and muscarinic toxins, in Dendroaspis venoms, and acetylcholinesterase in other elapid venoms, is to promote hypotension. Venom dipeptidyl peptidase IV-like enzymes probably also contribute to hypotension by destroying vasoconstrictive peptides such as Peptide YY, neuropeptide Y and substance P. Purines apparently bind to other toxins which then serve as molecular chaperones to deposit the bound purines at specific subsets Of purine receptors. The assignment of pharmacological activities such as transient neurotransmitter suppression, histamine release and antinociception, to a variety of proteinaccous toxins, is probably erroneous. Such effects are probably due instead to purines bound to these toxins, and/or to free venom purines. (C) 2002 Published by Elsevier Science.
引用
收藏
页码:335 / 393
页数:59
相关论文
共 816 条
[1]   EVIDENCE FOR PREJUNCTIONAL M2 MUSCARINIC RECEPTORS IN PULMONARY CHOLINERGIC NERVES IN THE RAT [J].
AAS, P ;
MACLAGAN, J .
BRITISH JOURNAL OF PHARMACOLOGY, 1990, 101 (01) :73-76
[2]   The role of adenosine in insulin-induced vasodilation [J].
Abbink-Zandbergen, EJ ;
Vervoort, G ;
Tack, CJJ ;
Lutterman, JA ;
Schaper, NC ;
Smits, P .
JOURNAL OF CARDIOVASCULAR PHARMACOLOGY, 1999, 34 (03) :374-380
[3]  
Abe Y, 1998, BIOL PHARM BULL, V21, P924
[4]   ACUTE RENAL-FAILURE AFTER ENVENOMATION BY THE COMMON BROWN SNAKE [J].
ACOTT, CJ .
MEDICAL JOURNAL OF AUSTRALIA, 1988, 149 (11-12) :709-710
[5]   THE HEPARIN BINDING-SITE OF HUMAN EXTRACELLULAR-SUPEROXIDE DISMUTASE [J].
ADACHI, T ;
KODERA, T ;
OHTA, H ;
HAYASHI, K ;
HIRANO, K .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1992, 297 (01) :155-161
[6]   Oral L-arginine improves endothelium-dependent dilatation and reduces monocyte adhesion to endothelial cells in young men with coronary artery disease [J].
Adams, MR ;
McCredie, R ;
Jessup, W ;
Robinson, J ;
Sullivan, D ;
Celermajer, DS .
ATHEROSCLEROSIS, 1997, 129 (02) :261-269
[7]   ORAL L-ARGININE INHIBITS PLATELET-AGGREGATION BUT DOES NOT ENHANCE ENDOTHELIUM-DEPENDENT DILATION IN HEALTHY-YOUNG MEN [J].
ADAMS, MR ;
FORSYTH, CJ ;
JESSUP, W ;
ROBINSON, J ;
CELERMAJER, DS .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 1995, 26 (04) :1054-1061
[8]   TOXINS FROM THE VENOM OF THE GREEN MAMBA DENDROASPIS-ANGUSTICEPS THAT INHIBIT THE BINDING OF QUINUCLIDINYL BENZILATE TO MUSCARINIC ACETYLCHOLINE-RECEPTORS [J].
ADEM, A ;
ASBLOM, A ;
JOHANSSON, G ;
MBUGUA, PM ;
KARLSSON, E .
BIOCHIMICA ET BIOPHYSICA ACTA, 1988, 968 (03) :340-345
[9]   DISPARATE EFFECTS OF ADENOSINE-A(1)-RECEPTOR AND A(2)-RECEPTOR AGONISTS ON INTRARENAL BLOOD-FLOW [J].
AGMON, Y ;
DINOUR, D ;
BREZIS, M .
AMERICAN JOURNAL OF PHYSIOLOGY, 1993, 265 (06) :F802-F806
[10]  
AGOSTINHO AB, 1995, ADV EXP MED BIOL, V370, P277