Nitrogen-doped carbon-wrapped porous FeMnO3 nanocages derived from etched prussian blue analogues as high-performance anode for lithium ion batteries

被引:28
作者
Wang, Weiwei [1 ]
Zhang, Peilin [1 ]
Li, Shuo [1 ]
Zhou, Chencheng [1 ]
Guo, Shouzhi [1 ]
Liu, Jinzhe [1 ]
Zhou, Jiaojiao [1 ]
Jian, Xue [1 ]
Yang, Yun [1 ]
Lei, Yuchen [1 ]
Li, Kuang [1 ]
Wu, Jing [1 ]
Chen, Luyang [1 ]
机构
[1] East China Univ Sci & Technol, Sch Mat Sci & Engn, Key Lab Ultrafine Mat, Minist Educ, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Prussian blue analogue; FeMnO3; Nitrogen-doped carbon; Hollow porous nanocage; Lithium ion batteries; MOLTEN-SALT METHOD; LI-CYCLING PROPERTIES; ENERGY-STORAGE; ELECTROCHEMICAL PERFORMANCE; METAL-OXIDES; GRAPHENE; COMPOSITE; NANOPARTICLES; MICROSPHERES; CONVERSION;
D O I
10.1016/j.jpowsour.2020.228683
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the work, the porous FeMnO3 nanocages combined with nitrogen-doped carbon shells (FeMnO3@NC) are studied as the anode material for lithium ion batteries (LIBs). The FeMnO3@NC composite can inherit the nanocage-like structure of Prussian blue analogue (PBA) precursor, which is capable of buffering volume expansion and promoting the penetration of electrolyte. The nitrogen-doped carbon layer enhances the electronic transmission and structure stability of perovskite-type FeMnO3. Therefore, the composite electrode exhibits superior electrochemical performances, including desirable rate capability, excellent cycling stability and high capacity of similar to 1008 mAh g(-1) after 500 cycles at 1 A g(-1). Considering the features of FeMnO3@NC composite with environmental friendliness, low cost, and outstanding lithium ion storage performance, it is expected to become a promising material for new hybrid energy storage devices.
引用
收藏
页数:9
相关论文
共 85 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Valence-band x-ray photoelectron spectroscopic studies of manganese and its oxides interpreted by cluster and band structure calculations [J].
Audi, AA ;
Sherwood, PMA .
SURFACE AND INTERFACE ANALYSIS, 2002, 33 (03) :274-282
[3]   MOFs-derived porous Mn2O3 as high-performance anode material for Li-ion battery [J].
Bai, Zhongchao ;
Zhang, Yaohui ;
Zhang, Yuwen ;
Guo, Chunli ;
Tang, Bin ;
Sun, Di .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (10) :5266-5269
[4]   A high-performance anode material based on FeMnO3/graphene composite [J].
Bin, Heng ;
Yao, Zhenpeng ;
Zhu, Shenmin ;
Zhu, Chengling ;
Pan, Hui ;
Chen, Zhixin ;
Wolverton, Chris ;
Zhang, Di .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 695 :1223-1230
[5]   Exploration of MnFeO3/Multiwalled Carbon Nanotubes Composite as Potential Anode for Lithium Ion Batteries [J].
Bongu, Chandra Sekhar ;
Ragupathi, Jeevani ;
Nallathamby, Kalaiselvi .
INORGANIC CHEMISTRY, 2016, 55 (22) :11644-11651
[6]   Metal etching method for preparing porous graphene as high performance anode material for lithium-ion batteries [J].
Cao, Hailiang ;
Zhou, Xufeng ;
Zheng, Chao ;
Liu, Zhaoping .
CARBON, 2015, 89 :41-46
[7]   FeMnO3: a high-performance Li-ion battery anode material [J].
Cao, Kangzhe ;
Liu, Huiqiao ;
Xu, Xiaohong ;
Wang, Yijing ;
Jiao, Lifang .
CHEMICAL COMMUNICATIONS, 2016, 52 (76) :11414-11417
[8]   3D Hierarchical Porous α-Fe2O3 Nanosheets for High-Performance Lithium-Ion Batteries [J].
Cao, Kangzhe ;
Jiao, Lifang ;
Liu, Huiqiao ;
Liu, Yongchang ;
Wang, Yijing ;
Guo, Zaiping ;
Yuan, Huatang .
ADVANCED ENERGY MATERIALS, 2015, 5 (04)
[9]   Nitrogen-Doped Carbon for Sodium-Ion Battery Anode by Self-Etching and Graphitization of Bimetallic MOF-Based Composite [J].
Chen, Yuming ;
Li, Xiaoyan ;
Park, Kyusung ;
Lu, Wei ;
Wang, Chao ;
Xue, Weijiang ;
Yang, Fei ;
Zhou, Jiang ;
Suo, Liumin ;
Lin, Tianquan ;
Huang, Haitao ;
Li, Ju ;
Goodenough, John B. .
CHEM, 2017, 3 (01) :152-163
[10]   Functional Materials for Rechargeable Batteries [J].
Cheng, Fangyi ;
Liang, Jing ;
Tao, Zhanliang ;
Chen, Jun .
ADVANCED MATERIALS, 2011, 23 (15) :1695-1715