General Harris regularity criterion for non-linear Markov branching processes

被引:4
作者
Chen, AY
Li, JP
Ramesh, NI
机构
[1] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
[2] Univ Greenwich, Old Royal Naval Coll, Sch Comp & Math Sci, London SE10 9LS, England
[3] Cent S Univ, Sch Math, Changsha, Peoples R China
关键词
Markov branching process; non-linear Markov branching process; regularity;
D O I
10.1016/j.spl.2005.08.014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We extend the Harris regularity condition for ordinary Markov branching process to a more general case of non-linear Markov branching process. A regularity criterion which is very easy to check is obtained. In particular, we prove that a super-linear Markov branching process is regular if and only if the per capita offspring mean is less than or equal to I while a sub-linear Markov branching process is regular if the per capita offspring mean is finite. The Harris regularity condition then becomes a special case of our criterion. ((C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:446 / 452
页数:7
相关论文
共 12 条
[1]  
Anderson W. J., 1991, CONTINUOUS TIME MARK
[2]  
Asmussen S., 1983, Branching processes
[3]  
Athreya K.B., 1996, Classical and Modern Branching Processes
[4]  
Athreya K.B., 1972, BRANCHING PROCESS
[5]   Ergodicity and stability of generalised Markov branching processes with resurrection [J].
Chen, AY .
JOURNAL OF APPLIED PROBABILITY, 2002, 39 (04) :786-803
[6]   Uniqueness and extinction properties of generalised Markov branching processes [J].
Chen, AY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 274 (02) :482-494
[7]   Applications of Feller-Reuter-Riley transition functions [J].
Chen, AY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 260 (02) :439-456
[8]   An extended class of time-continuous branching processes [J].
Chen, RR .
JOURNAL OF APPLIED PROBABILITY, 1997, 34 (01) :14-23
[9]  
Chung K. L., 1967, MARKOV CHAINS STATIO
[10]  
Harris TE, 1963, Die Grundlehren der mathematischen Wissenschaften, V119