SAR Image Multiclass Segmentation Using a Multiscale TMF Model in Wavelet Domain

被引:14
作者
Zhang, Peng [1 ]
Li, Ming [1 ]
Wu, Yan [2 ]
Liu, Ming [2 ]
Wang, Fan [2 ]
Gan, Lu [2 ]
机构
[1] Xidian Univ, Natl Key Lab Radar Signal Proc, Xian 710071, Peoples R China
[2] Xidian Univ, Remote Sensing Image Proc & Fus Grp, Sch Elect Engn, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Hidden Markov tree (HMT); multiclass segmentation; synthetic aperture radar (SAR) image; wavelet-domain triplet Markov field (WTMF) energy function; WTMF model; MARKOV; SIGNAL;
D O I
10.1109/LGRS.2012.2189094
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The triplet Markov field (TMF) model recently proposed is suitable for dealing with nonstationary synthetic aperture radar (SAR) image segmentation. In this letter, we propose a multiscale TMF model in wavelet domain, named as the wavelet-domain TMF (WTMF) model. In the WTMF model, a multiscale causal WTMF energy function is constructed to capture the intra- and interscale dependences in random fields (X, U). Moreover, multiscale likelihoods of the WTMF model are derived based on a wavelet hidden Markov tree to capture the statistical properties of wavelet coefficients. The proposed model can integrate the global and local information in terms of spatial configuration and image features in a more complete manner. The coarser scale information is utilized to guide the finer scale segmentation, and the coarse-to-fine causal interactions are considered using a Markov chain. Experimental results prove that the proposed model can segment SAR images better than several models previously proposed.
引用
收藏
页码:1099 / 1103
页数:5
相关论文
共 15 条
[1]   Unsupervised image segmentation using triplet Markov fields [J].
Benboudjema, D ;
Pieczynski, W .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2005, 99 (03) :476-498
[2]   Unsupervised statistical segmentation of nonstationary images using triplet Markov fields [J].
Benboudjema, Dalila ;
Pieczynski, Wojciech .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (08) :1367-1378
[3]   Quantitative comparison of the performance of SAR segmentation algorithms [J].
Caves, R ;
Quegan, S ;
White, R .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (11) :1534-1546
[4]   Multiscale image segmentation using wavelet-domain hidden Markov models [J].
Choi, H ;
Baraniuk, RG .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001, 10 (09) :1309-1321
[5]  
Collet C, 2004, PATTERN RECOGN, V37, P2337, DOI [10.1016/S0031-3203(04)00190-6, 10.1016/j.patcog.2004.03.017]
[6]   Wavelet-based statistical signal processing using hidden Markov models [J].
Crouse, MS ;
Nowak, RD ;
Baraniuk, RG .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (04) :886-902
[7]   Spatially nonstationary anisotropic texture analysis in SAR images [J].
D'Hondt, Olivier ;
Lopez-Martinez, Carlos ;
Ferro-Famil, Laurent ;
Pottier, Eric .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (12) :3905-3918
[8]   Unsupervised segmentation of synthetic aperture radar sea ice imagery using a novel Markov random field model [J].
Deng, H ;
Clausi, DA .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03) :528-538
[9]   A hierarchical Markovian model for multiscale region-based classification of vector-valued images [J].
Katartzis, A ;
Vanhamel, I ;
Sahli, H .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03) :548-558
[10]   An Efficient and Flexible Statistical Model Based on Generalized Gamma Distribution for Amplitude SAR Images [J].
Li, Heng-Chao ;
Hong, Wen ;
Wu, Yi-Rong ;
Fan, Ping-Zhi .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (06) :2711-2722