Freeze gelated porous membranes for periodontal tissue regeneration

被引:98
作者
Qasim, Saad B. [1 ]
Delaine-Smith, Robin M. [2 ]
Fey, Tobias [3 ]
Rawlinson, Andrew [4 ]
Rehman, Ihtesham Ur [1 ]
机构
[1] Univ Sheffield, Kroto Res Inst, Mat Sci & Engn Dept, Sheffield S3 7HQ, S Yorkshire, England
[2] Queen Mary Univ London, Sch Engn & Mat Sci, Inst Bioengn, London E1 4NS, England
[3] Univ Erlangen Nurnberg, Dept Mat Sci Glass & Ceram, D-91058 Erlangen, Germany
[4] Univ Sheffield, Sch Clin Dent, Acad Unit Restorat Dent, Sheffield S10 2SZ, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Ascorbic acid; Guided tissue regeneration; Resorbable; Bioactivity; Osteoblasts; MESENCHYMAL STEM-CELLS; COMPOSITE SCAFFOLDS; HYDROXYAPATITE; DEVICES; GENIPIN;
D O I
10.1016/j.actbio.2015.05.001
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Guided tissue regeneration (GTR) membranes have been used for the management of destructive forms of periodontal disease as a means of aiding regeneration of lost supporting tissues, including the alveolar bone, cementum, gingiva and periodontal ligaments (PDL). Currently available GTR membranes are either non-biodegradable, requiring a second surgery for removal, or biodegradable. The mechanical and biofunctional limitations of currently available membranes result in a limited and unpredictable treatment outcome in terms of periodontal tissue regeneration. In this study, porous membranes of chitosan (CH) were fabricated with or without hydroxyapatite (HA) using the simple technique of freeze gelation (FG) via two different solvents systems, acetic acid (ACa) or ascorbic acid (ASa). The aim was to prepare porous membranes to be used for GTR to improve periodontal regeneration. FG membranes were characterized for ultra-structural morphology, physiochemical properties, water uptake, degradation, mechanical properties, and biocompatibility with mature and progenitor osteogenic cells. Fourier transform infrared (FTIR) spectroscopy confirmed the presence of hydroxyapatite and its interaction with chitosan. mu CT analysis showed membranes had 85-77% porosity. Mechanical properties and degradation rate were affected by solvent type and the presence of hydroxyapatite. Culture of human osteosarcoma cells (MG63) and human embryonic stem cell-derived mesenchymal progenitors (hES-MPs) showed that all membranes supported cell proliferation and long term matrix deposition was supported by HA incorporated membranes. These CH and HA composite membranes show their potential use for GTR applications in periodontal lesions and in addition FG membranes could be further tuned to achieve characteristics desirable of a GTR membrane for periodontal regeneration. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:317 / 328
页数:12
相关论文
共 51 条
[1]   Chitosan membrane as a wound-healing dressing: Characterization and clinical application [J].
Azad, AK ;
Sermsintham, N ;
Chandrkrachang, S ;
Stevens, WF .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2004, 69B (02) :216-222
[2]   Recent advances in the development of GTR/GBR membranes for periodontal regeneration-A materials perspective [J].
Bottino, Marco C. ;
Thomas, Vinoy ;
Schmidt, Gudrun ;
Vohra, Yogesh K. ;
Chu, Tien-Min Gabriel ;
Kowolik, Michael J. ;
Janowski, Gregg M. .
DENTAL MATERIALS, 2012, 28 (07) :703-721
[3]   A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration [J].
Bottino, Marco C. ;
Thomas, Vinoy ;
Janowski, Gregg M. .
ACTA BIOMATERIALIA, 2011, 7 (01) :216-224
[4]   Collagen membranes: A review [J].
Bunyaratavej, P ;
Wang, HL .
JOURNAL OF PERIODONTOLOGY, 2001, 72 (02) :215-229
[5]   Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration [J].
Cheng Xianmiao ;
Li Yubao ;
Zuo Yi ;
Zhang Li ;
Li Jidong ;
Wang Huanan .
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2009, 29 (01) :29-35
[6]   Chitosan-A versatile semi-synthetic polymer in biomedical applications [J].
Dash, M. ;
Chiellini, F. ;
Ottenbrite, R. M. ;
Chiellini, E. .
PROGRESS IN POLYMER SCIENCE, 2011, 36 (08) :981-1014
[7]  
de Peppo GM, 2010, TISSUE ENG PT A, V16, P3413, DOI [10.1089/ten.tea.2010.0052, 10.1089/ten.TEA.2010.0052]
[8]   Freezing as a path to build complex composites [J].
Deville, S ;
Saiz, E ;
Nalla, RK ;
Tomsia, AP .
SCIENCE, 2006, 311 (5760) :515-518
[9]   Stem cells in dentistry - Part II: Clinical applications [J].
Egusa, Hiroshi ;
Sonoyama, Wataru ;
Nishimura, Masahiro ;
Atsuta, Ikiru ;
Akiyama, Kentaro .
JOURNAL OF PROSTHODONTIC RESEARCH, 2012, 56 (04) :229-248
[10]   Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering [J].
Frohbergh, Michael E. ;
Katsman, Anna ;
Botta, Gregory R. ;
Lazarovici, Phillip ;
Schauer, Caroline L. ;
Wegst, Ulrike G. K. ;
Lelkes, Peter I. .
BIOMATERIALS, 2012, 33 (36) :9167-9178