Operando Structural and Electrochemical Investigation of Li1.5V3O8 Nanorods in Li-ion Batteries

被引:9
|
作者
Thamodaran, Partheeban [1 ,2 ]
Kesavan, Thangaian [1 ,2 ]
Vivekanantha, Murugan [1 ,2 ,3 ]
Senthilkumar, Baskar [4 ]
Barpanda, Prabeer [4 ]
Sasidharan, Manickam [1 ,2 ]
机构
[1] SRM Inst Sci & Technol, SRM Res Inst, Chennai 603203, Tamil Nadu, India
[2] SRM Inst Sci & Technol, Dept Chem, Chennai 603203, Tamil Nadu, India
[3] SRM Inst Sci & Technol, Dept Phys & Nanotechnol, Chennai 603203, Tamil Nadu, India
[4] Indian Inst Sci, Mat Res Ctr, Faraday Mat Lab, Bangalore 560012, Karnataka, India
关键词
Li-ion battery; cathode; Li1.5V3O8; in-situ XRD; low-temperature performance; POSITIVE-ELECTRODE MATERIALS; CATHODE MATERIALS; LITHIUM BATTERIES; LIV3O8; PERFORMANCE; LI1+XV3O8; CARBON; TEMPERATURE; NANOSHEETS; LINIO2;
D O I
10.1021/acsaem.8b01915
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report facile solvothermal synthesis of submicron (sub-micrometer)-sized rod-like Li1.5V3O8 crystals using a mixture of ethylene glycol/water as the reacting media. The crystal structure and morphology of the resulting compound were characterized by Rietveld refinement, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and thermal analysis (TG/DTA). Rietveld analysis confirms monoclinic Li1.5V3O8 crystals with P2(1)/m symmetry having a monodispersed similar to 5 mu m long and similar to 500 nm thick rod-like morphology. As the cathode in Li-ion batteries (LIBs), Li1.5V3O8 nanorods deliver a reversible discharge capacity of similar to 239 mAh g(-1) in the voltage window of 2.0-4.0 V (vs Li/Li+) at a 0.1 C rate after 50 cycles. Li1.5V3O8 nanorods retain an impressive discharge capacity of similar to 161 mAh g(-1) after 250 cycles at a 1 C rate. Operando (in-situ) XRD investigation of Li1.5V3O8 during electrochemical (dis)charging confirms the phase transformations from a Li-poor alpha-phase (Li-1) via a Li-rich alpha-phase (Li-2.5) to a beta-phase (Li-4). Low-temperature performance evaluation of the Li(1.5)V(3O)8 cathode exhibits less than 50% of the discharge capacity achieved at 25 degrees C. Evaluation of dis(charge) behavior over different temperatures suggests that charge transfer resistance (Rct) plays a crucial role in determining Li-ion diffusivity vis-a-vis specific capacity at low-temperature.
引用
收藏
页码:852 / 859
页数:15
相关论文
共 50 条
  • [31] Carbon modified Li2Ti3O7 ramsdellite electrode for Li-ion batteries
    Villevieille, C.
    Van Thournout, M.
    Scoyer, J.
    Tessier, C.
    Olivier-Fourcade, J.
    Jumas, J. -C.
    Monconduit, L.
    ELECTROCHIMICA ACTA, 2010, 55 (23) : 7080 - 7084
  • [32] Enhanced electrochemical properties of MgF2 and C co-coated Li3V2(PO4)3 composite for Li-ion batteries
    Zhang, Cunliang
    Shen, Laifa
    Li, Hongshen
    Ping, Nie
    Zhang, Xiaogang
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2016, 762 : 1 - 6
  • [33] Ti(III) self-doped Li2ZnTi3O8 as a superior anode material for Li-ion batteries
    Chen, Chi
    Ai, Changchun
    Liu, Xinyi
    ELECTROCHIMICA ACTA, 2018, 265 : 448 - 454
  • [34] Template-free synthesis of LiV3O8 hollow microspheres as positive electrode for Li-ion batteries
    Partheeban, Thamodaran
    Sasidharan, Manickam
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (05) : 2155 - 2165
  • [35] Synthesis and electrochemical performance of an imidazolium based Li salt as electrolyte with Li fluorinated sulfonylimides as additives for Li-Ion batteries
    Ahmed, Faiz
    Rahman, Md Mahbubur
    Sutradhar, Sabuj Chandra
    Lopa, Nasrin Siraj
    Ryu, Taewook
    Yoon, Sujin
    Choi, Inhwan
    Lee, Yonghoon
    Kim, Whangi
    ELECTROCHIMICA ACTA, 2019, 302 : 161 - 168
  • [36] Microwave-assisted hydrothermal synthesis of V2O5 nanorods assemblies with an improved Li-ion batteries performance
    Pan, Jing
    Li, Ming
    Luo, Yuanyuan
    Wu, Hao
    Zhong, Li
    Wang, Qiang
    Li, Guanghai
    MATERIALS RESEARCH BULLETIN, 2016, 74 : 90 - 95
  • [37] Structural, electrochemical and Li-ion transport properties of Zr-modified LiNi0.8Co0.1Mn0.1O2 positive electrode materials for Li-ion batteries
    Gao, Shuang
    Zhan, Xiaowen
    Cheng, Yang-Tse
    JOURNAL OF POWER SOURCES, 2019, 410 : 45 - 52
  • [38] Combining 5 V LiNi0.5Mn1.5O4 spinel and Si nanoparticles for advanced Li-ion batteries
    Arrebola, J. C.
    Caballero, A.
    Gomez-Camer, J. L.
    Hernan, L.
    Morales, J.
    Sanchez, L.
    ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (05) : 1061 - 1064
  • [39] Enhanced electrochemical performance of a selectively formed V2O3/C composite structure for Li-ion batteries
    Kim, Ji-Hwan
    Kim, Yo-Seob
    Moon, Sang-Hyun
    Park, Deok-Hye
    Kim, Min-Cheol
    Choi, Jin-Hyeok
    Shin, Jae-Hoon
    Park, Kyung-Won
    ELECTROCHIMICA ACTA, 2021, 389
  • [40] Effect of Li-ion doping on structural, optical and electrochemical properties of V2O5
    Bhatt, Minal A.
    Tanna, Ashish R.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (32)