Operando Structural and Electrochemical Investigation of Li1.5V3O8 Nanorods in Li-ion Batteries

被引:9
|
作者
Thamodaran, Partheeban [1 ,2 ]
Kesavan, Thangaian [1 ,2 ]
Vivekanantha, Murugan [1 ,2 ,3 ]
Senthilkumar, Baskar [4 ]
Barpanda, Prabeer [4 ]
Sasidharan, Manickam [1 ,2 ]
机构
[1] SRM Inst Sci & Technol, SRM Res Inst, Chennai 603203, Tamil Nadu, India
[2] SRM Inst Sci & Technol, Dept Chem, Chennai 603203, Tamil Nadu, India
[3] SRM Inst Sci & Technol, Dept Phys & Nanotechnol, Chennai 603203, Tamil Nadu, India
[4] Indian Inst Sci, Mat Res Ctr, Faraday Mat Lab, Bangalore 560012, Karnataka, India
关键词
Li-ion battery; cathode; Li1.5V3O8; in-situ XRD; low-temperature performance; POSITIVE-ELECTRODE MATERIALS; CATHODE MATERIALS; LITHIUM BATTERIES; LIV3O8; PERFORMANCE; LI1+XV3O8; CARBON; TEMPERATURE; NANOSHEETS; LINIO2;
D O I
10.1021/acsaem.8b01915
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report facile solvothermal synthesis of submicron (sub-micrometer)-sized rod-like Li1.5V3O8 crystals using a mixture of ethylene glycol/water as the reacting media. The crystal structure and morphology of the resulting compound were characterized by Rietveld refinement, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and thermal analysis (TG/DTA). Rietveld analysis confirms monoclinic Li1.5V3O8 crystals with P2(1)/m symmetry having a monodispersed similar to 5 mu m long and similar to 500 nm thick rod-like morphology. As the cathode in Li-ion batteries (LIBs), Li1.5V3O8 nanorods deliver a reversible discharge capacity of similar to 239 mAh g(-1) in the voltage window of 2.0-4.0 V (vs Li/Li+) at a 0.1 C rate after 50 cycles. Li1.5V3O8 nanorods retain an impressive discharge capacity of similar to 161 mAh g(-1) after 250 cycles at a 1 C rate. Operando (in-situ) XRD investigation of Li1.5V3O8 during electrochemical (dis)charging confirms the phase transformations from a Li-poor alpha-phase (Li-1) via a Li-rich alpha-phase (Li-2.5) to a beta-phase (Li-4). Low-temperature performance evaluation of the Li(1.5)V(3O)8 cathode exhibits less than 50% of the discharge capacity achieved at 25 degrees C. Evaluation of dis(charge) behavior over different temperatures suggests that charge transfer resistance (Rct) plays a crucial role in determining Li-ion diffusivity vis-a-vis specific capacity at low-temperature.
引用
收藏
页码:852 / 859
页数:15
相关论文
共 50 条
  • [1] Operando Investigation of Silicon Anodes During Electrochemical Cycling in Li-ion Batteries
    Hapuarachchi, Sashini N. S.
    Jones, Michael W. M.
    Wasalathilake, Kimal C.
    Marriam, Ifra
    Nerkar, Jawahar Y.
    Kirby, Nigel
    Siriwardena, Dumindu P.
    Fernando, Joseph F. S.
    Golberg, Dmitri V.
    O'Mullane, Anthony P.
    Zheng, Jun-chao
    Yan, Cheng
    SMALL METHODS, 2024, 8 (07)
  • [2] Synthesis and performance of Li1.5V3O8 nanosheets as a cathode material for high-rate lithium-ion batteries
    Wang, Yanli
    Xu, Xingyan
    Cao, Chuanbao
    Shi, Cui
    Mo, Wei
    Zhu, Hesun
    JOURNAL OF POWER SOURCES, 2013, 242 : 230 - 235
  • [3] Electrochemical and Structural Investigation of Calcium Substituted Monoclinic Li3V2(PO4)3 Anode Materials for Li-Ion Batteries
    Fu, Qiang
    Liu, Shuoqi
    Sarapulova, Angelina
    Zhu, Lihua
    Etter, Martin
    Welter, Edmund
    Weidler, Peter G.
    Knapp, Michael
    Ehrenberg, Helmut
    Dsoke, Sonia
    ADVANCED ENERGY MATERIALS, 2019, 9 (33)
  • [4] Operando Neutron Depth Profiling to Determine the Spatial Distribution of Li in Li-ion Batteries
    Verhallen, Tomas W.
    Lv, Shasha
    Wagemaker, Marnix
    FRONTIERS IN ENERGY RESEARCH, 2018, 6
  • [5] A simple method to prepare NH4V3O8 nanorods as cathode material for Li-ion batteries
    Cao, Shan-Shan
    Huang, Jian-Feng
    Ouyang, Hai-Bo
    Cao, Li-Yun
    Li, Jia-Yin
    Wu, Jian-Peng
    MATERIALS LETTERS, 2014, 126 : 20 - 23
  • [6] Electrochemical Oscillation in Li-Ion Batteries
    Li, De
    Sun, Yang
    Yang, Zhenzhong
    Gu, Lin
    Chen, Yong
    Zhou, Haoshen
    JOULE, 2018, 2 (07) : 1265 - 1277
  • [7] Effects of Preinserted Na Ions on Li-Ion Electrochemical Intercalation Properties of V2O5
    Li, Xinyuan
    Liu, Chaofeng
    Zhang, Changkun
    Fu, Haoyu
    Nan, Xihui
    Ma, Wenda
    Li, Zhuoyu
    Wang, Kan
    Wu, Haibo
    Cao, Guozhong
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (37) : 24629 - 24637
  • [8] Operando electron magnetic measurements of Li-ion batteries
    Gershinsky, Gregory
    Bar, Elad
    Monconduit, Laure
    Zitoun, David
    ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (06) : 2012 - 2016
  • [9] In Situ Electrochemical Impedance Measurements of α-Fe2O3 Nanofibers: Unravelling the Li-Ion Conduction Mechanism in Li-Ion Batteries
    Hwang, Jinhyun
    Yadav, Dolly
    Yang, Hang
    Jeon, Injun
    Yang, Dingcheng
    Seo, Jang-Won
    Kang, Minseung
    Jeong, Se-Young
    Cho, Chae-Ryong
    BATTERIES-BASEL, 2022, 8 (05):
  • [10] Electrochemical Study of Functional Additives for Li-Ion Batteries
    Khodr, Zaynab
    Mallet, Charlotte
    Daigle, Jean-Christophe
    Feng, Zimin
    Amouzegar, Kamyab
    Claverie, Jerome
    Zaghib, Karim
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (12)