Route to chaos via strange non-chaotic attractors by reshaping periodic excitations

被引:20
作者
Chacón, R
García-Hoz, AM
机构
[1] Univ Extremadura, Escuela Ingn Ind, Dept Elect & Ingn Electromecan, E-06071 Badajoz, Spain
[2] Univ Castilla La Mancha, Escuela Univ Politecn, Dept Fis Aplicada, E-13400 Ciudad Real, Spain
来源
EUROPHYSICS LETTERS | 2002年 / 57卷 / 01期
关键词
D O I
10.1209/epl/i2002-00533-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present theoretical and numerical evidence for a new route, strange nonchaotic behavior <--> chaos, in two-period quasiperiodically driven dynamical systems by solely changing the excitation waveform. A characteristic signature of this route is the existence of a sequence of intervals over a wide range of waveforms for which only strange non-chaotic attractors or chaos appear, alternatingly. We also found that the largest nontrivial Lyapunov exponent passes through zero linearly near each transition point, which confirms and extends the scaling behavior previously reported for other control parameters.
引用
收藏
页码:7 / 13
页数:7
相关论文
共 30 条
[1]   QUASIPERIODICALLY FORCED DAMPED PENDULA AND SCHRODINGER-EQUATIONS WITH QUASIPERIODIC POTENTIALS - IMPLICATIONS OF THEIR EQUIVALENCE [J].
BONDESON, A ;
OTT, E ;
ANTONSEN, TM .
PHYSICAL REVIEW LETTERS, 1985, 55 (20) :2103-2106
[2]   Chaos and geometrical resonance in the damped pendulum subjected to periodic pulses [J].
Chacon, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (03) :1477-1483
[3]   INHIBITION OF CHAOS IN HAMILTONIAN-SYSTEMS BY PERIODIC PULSES [J].
CHACON, R .
PHYSICAL REVIEW E, 1994, 50 (02) :750-753
[4]   Chaotic behavior in a dissipative non-ideal periodically kicked rotator [J].
Chacón, R ;
García-Hoz, AM .
PHYSICS LETTERS A, 2001, 281 (04) :231-239
[5]   DIMENSIONS OF STRANGE NONCHAOTIC ATTRACTORS [J].
DING, MZ ;
GREBOGI, C ;
OTT, E .
PHYSICS LETTERS A, 1989, 137 (4-5) :167-172
[6]   EVOLUTION OF ATTRACTORS IN QUASIPERIODICALLY FORCED SYSTEMS - FROM QUASIPERIODIC TO STRANGE NONCHAOTIC TO CHAOTIC [J].
DING, MZ ;
GREBOGI, C ;
OTT, E .
PHYSICAL REVIEW A, 1989, 39 (05) :2593-2598
[7]   PHASE-RESETTING MAP AND THE DYNAMICS OF QUASI-PERIODICALLY FORCED BIOLOGICAL OSCILLATORS [J].
DING, MZ ;
KELSO, JAS .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1994, 4 (03) :553-567
[8]   EXPERIMENTAL-OBSERVATION OF A STRANGE NONCHAOTIC ATTRACTOR [J].
DITTO, WL ;
SPANO, ML ;
SAVAGE, HT ;
RAUSEO, SN ;
HEAGY, J ;
OTT, E .
PHYSICAL REVIEW LETTERS, 1990, 65 (05) :533-536
[9]   STRANGE NONCHAOTIC ATTRACTOR IN A QUASI-PERIODICALLY FORCED CIRCLE MAP [J].
FEUDEL, U ;
KURTHS, J ;
PIKOVSKY, AS .
PHYSICA D, 1995, 88 (3-4) :176-186
[10]   STRANGE ATTRACTORS THAT ARE NOT CHAOTIC [J].
GREBOGI, C ;
OTT, E ;
PELIKAN, S ;
YORKE, JA .
PHYSICA D, 1984, 13 (1-2) :261-268