Identifiability and Consistent Estimation of Nonparametric Translation Hidden Markov Models with General State Space

被引:0
|
作者
Gassiat, Elisabeth [1 ]
Le Corff, Sylvain [2 ]
Lehericy, Luc [1 ]
机构
[1] Univ Paris Saclay, CNRS, Lab Math Orsay, Orsay, France
[2] Inst Polytech Paris, Samovar, Telecom SudParis, Dept CITI,TIPIC, Palaiseau, France
关键词
Nonparametric estimation; latent variable models; deconvolution; MAXIMUM-LIKELIHOOD; OPTIMAL RATES; DECONVOLUTION; CONVERGENCE; IDENTIFICATION; INFERENCE; ERROR;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers hidden Markov models where the observations are given as the sum of a latent state which lies in a general state space and some independent noise with unknown distribution. It is shown that these fully nonparametric translation models are identifiable with respect to both the distribution of the latent variables and the distribution of the noise, under mostly a light tail assumption on the latent variables. Two nonparametric estimation methods are proposed and we prove that the corresponding estimators are consistent for the weak convergence topology. These results are illustrated with numerical experiments.
引用
收藏
页数:40
相关论文
共 50 条
  • [41] Kullback-Leibler Divergence and Akaike Information Criterion in General Hidden Markov Models
    Fuh, Cheng-Der
    Kao, Chu-Lan Michael
    Pang, Tianxiao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (08) : 5888 - 5909
  • [42] Nested particle filters for online parameter estimation in discrete-time state-space Markov models
    Crisan, Dan
    Miguez, Joaquin
    BERNOULLI, 2018, 24 (4A) : 3039 - 3086
  • [43] A gentle tutorial on accelerated parameter and confidence interval estimation for hidden Markov models using Template Model Builder
    Bacri, Timothee
    Berentsen, Geir D.
    Bulla, Jan
    Holleland, Sondre
    BIOMETRICAL JOURNAL, 2022, 64 (07) : 1260 - 1288
  • [44] On Stability and LQ Control of MJLS With a Markov Chain With General State Space
    Kordonis, Ioannis
    Papavassilopoulos, George P.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (02) : 535 - 540
  • [45] Spline-based nonparametric inference in general state-switching models
    Langrock, Roland
    Adam, Timo
    Leos-Barajas, Vianey
    Mews, Sina
    Miller, David L.
    Papastamatiou, Yannis P.
    STATISTICA NEERLANDICA, 2018, 72 (03) : 179 - 200
  • [46] Markov-switching state-space models with applications to neuroimaging
    Degras, David
    Ting, Chee-Ming
    Ombao, Hernando
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 174
  • [47] Nonparametric Estimation for High-Dimensional Space Models Based on a Deep Neural Network
    Wang, Hongxia
    Jin, Xiao
    Wang, Jianian
    Hao, Hongxia
    MATHEMATICS, 2023, 11 (18)
  • [48] Robust speech recognition based on joint model and feature space optimization of hidden Markov models
    Moon, S
    Hwang, JN
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (02): : 194 - 204
  • [49] Likelihood ratio testing in linear state space models: An application to dynamic stochastic general equilibrium models
    Komunjer, Ivana
    Zhu, Yinchu
    JOURNAL OF ECONOMETRICS, 2020, 218 (02) : 561 - 586
  • [50] Estimation in Multi-State Semi-Markov Models with a Cured Fraction and Masked Causes of Deaths
    Lim, Yongho
    Cigsar, Candemir
    Yilmaz, Yildiz E.
    STATISTICS IN BIOSCIENCES, 2024,