This paper considers hidden Markov models where the observations are given as the sum of a latent state which lies in a general state space and some independent noise with unknown distribution. It is shown that these fully nonparametric translation models are identifiable with respect to both the distribution of the latent variables and the distribution of the noise, under mostly a light tail assumption on the latent variables. Two nonparametric estimation methods are proposed and we prove that the corresponding estimators are consistent for the weak convergence topology. These results are illustrated with numerical experiments.
机构:
Imperial Coll London, Dept Math, Huxley Bldg,180 Queens Gate, London SW7 2BZ, EnglandImperial Coll London, Dept Math, Huxley Bldg,180 Queens Gate, London SW7 2BZ, England
Crisan, Dan
Miguez, Joaquin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Carlos III Madrid, Dept Signal Theory & Commun, Ave Univ 30, Madrid 28911, SpainImperial Coll London, Dept Math, Huxley Bldg,180 Queens Gate, London SW7 2BZ, England
机构:
Univ Massachusetts Boston, Dept Math, 100 William T Morrissey Blvd, Boston, MA 02125 USAUniv Massachusetts Boston, Dept Math, 100 William T Morrissey Blvd, Boston, MA 02125 USA
Degras, David
Ting, Chee-Ming
论文数: 0引用数: 0
h-index: 0
机构:
Monash Univ Malaysia, Sch Informat Technol, Subang Jaya 47500, Selangor, MalaysiaUniv Massachusetts Boston, Dept Math, 100 William T Morrissey Blvd, Boston, MA 02125 USA
Ting, Chee-Ming
Ombao, Hernando
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol, Stat Program, Thuwal 239556900, Saudi ArabiaUniv Massachusetts Boston, Dept Math, 100 William T Morrissey Blvd, Boston, MA 02125 USA
机构:
Georgetown Univ, Dept Econ, 37th St NW & O St NW, Washington, DC 20007 USAGeorgetown Univ, Dept Econ, 37th St NW & O St NW, Washington, DC 20007 USA
Komunjer, Ivana
Zhu, Yinchu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oregon, Lundquist Coll Business, 1208 Univ St, Eugene, OR 97403 USAGeorgetown Univ, Dept Econ, 37th St NW & O St NW, Washington, DC 20007 USA