Identifiability and Consistent Estimation of Nonparametric Translation Hidden Markov Models with General State Space

被引:0
|
作者
Gassiat, Elisabeth [1 ]
Le Corff, Sylvain [2 ]
Lehericy, Luc [1 ]
机构
[1] Univ Paris Saclay, CNRS, Lab Math Orsay, Orsay, France
[2] Inst Polytech Paris, Samovar, Telecom SudParis, Dept CITI,TIPIC, Palaiseau, France
关键词
Nonparametric estimation; latent variable models; deconvolution; MAXIMUM-LIKELIHOOD; OPTIMAL RATES; DECONVOLUTION; CONVERGENCE; IDENTIFICATION; INFERENCE; ERROR;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers hidden Markov models where the observations are given as the sum of a latent state which lies in a general state space and some independent noise with unknown distribution. It is shown that these fully nonparametric translation models are identifiable with respect to both the distribution of the latent variables and the distribution of the noise, under mostly a light tail assumption on the latent variables. Two nonparametric estimation methods are proposed and we prove that the corresponding estimators are consistent for the weak convergence topology. These results are illustrated with numerical experiments.
引用
收藏
页数:40
相关论文
共 50 条
  • [31] State space Markov switching models using wavelets
    Alencar, Airlane P.
    Morettin, Pedro A.
    Toloi, Clelia M. C.
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2013, 17 (02): : 221 - 238
  • [32] Nonparametric estimation of single-index models in scale-space
    Huh, Jib
    Dyal, Derek
    Park, Cheolwoo
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (12) : 2414 - 2443
  • [33] FAST ESTIMATION OF HIDDEN MARKOV MODELS VIA ALPHA-EM ALGORITHM
    Matsuyama, Yasuo
    Hayashi, Ryunosuke
    Yokote, Ryota
    2011 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2011, : 89 - 92
  • [34] Efficient Bayesian estimation and use of cut posterior in semiparametric hidden Markov models
    Moss, Daniel
    Rousseau, Judith
    ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (01): : 1815 - 1886
  • [35] Penalized composite likelihood estimation for hidden Markov models with unknown number of states
    Lin, Yong
    Huang, Mian
    STATISTICS & PROBABILITY LETTERS, 2025, 216
  • [36] Computational issues in parameter estimation for hidden Markov models with template model builder
    Bacri, Timothee
    Berentsen, Geir D.
    Bulla, Jan
    Stove, Bard
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (18) : 3421 - 3457
  • [37] Cost function based on hidden Markov models for parameter estimation of chaotic systems
    Shekofteh, Yasser
    Jafari, Sajad
    Rajagopal, Karthikeyan
    SOFT COMPUTING, 2019, 23 (13) : 4765 - 4776
  • [38] General tests of the Markov property in multi-state models
    Titman, Andrew C.
    Putter, Hein
    BIOSTATISTICS, 2022, 23 (02) : 380 - 396
  • [39] Efficient likelihood estimation in state space models
    Fuh, Cheng-Der
    ANNALS OF STATISTICS, 2006, 34 (04): : 2026 - 2068
  • [40] Maximum approximate likelihood estimation of general continuous-time state-space models
    Mews, Sina
    Langrock, Roland
    Oetting, Marius
    Yaqine, Houda
    Reinecke, Jost
    STATISTICAL MODELLING, 2024, 24 (01) : 9 - 28