Identifiability and Consistent Estimation of Nonparametric Translation Hidden Markov Models with General State Space

被引:0
|
作者
Gassiat, Elisabeth [1 ]
Le Corff, Sylvain [2 ]
Lehericy, Luc [1 ]
机构
[1] Univ Paris Saclay, CNRS, Lab Math Orsay, Orsay, France
[2] Inst Polytech Paris, Samovar, Telecom SudParis, Dept CITI,TIPIC, Palaiseau, France
关键词
Nonparametric estimation; latent variable models; deconvolution; MAXIMUM-LIKELIHOOD; OPTIMAL RATES; DECONVOLUTION; CONVERGENCE; IDENTIFICATION; INFERENCE; ERROR;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers hidden Markov models where the observations are given as the sum of a latent state which lies in a general state space and some independent noise with unknown distribution. It is shown that these fully nonparametric translation models are identifiable with respect to both the distribution of the latent variables and the distribution of the noise, under mostly a light tail assumption on the latent variables. Two nonparametric estimation methods are proposed and we prove that the corresponding estimators are consistent for the weak convergence topology. These results are illustrated with numerical experiments.
引用
收藏
页数:40
相关论文
共 50 条
  • [1] Nonparametric finite translation hidden Markov models and extensions
    Gassiat, Elisabeth
    Rousseau, Judith
    BERNOULLI, 2016, 22 (01) : 193 - 212
  • [2] Consistent Estimation of the Filtering and Marginal Smoothing Distributions in Nonparametric Hidden Markov Models
    De Castro, Yohann
    Gassiat, Elisabeth
    Le Corff, Sylvain
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (08) : 4758 - 4777
  • [3] Nonparametric regression on hidden Φ-mixing variables: Identifiability and consistency of a pseudo-likelihood based estimation procedure
    Dumont, Thierry
    Le Corff, Sylvain
    BERNOULLI, 2017, 23 (02) : 990 - 1021
  • [4] Minimax Adaptive Estimation of Nonparametric Hidden Markov Models
    De Castro, Yohann
    Gassiat, Elisabeth
    Lacour, Claire
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [5] Parameter redundancy and identifiability in hidden Markov models
    Cole, Diana J.
    METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2019, 77 (02): : 105 - 118
  • [6] Parametric estimation of hidden Markov models by least squares type estimation and deconvolution
    Chesneau, Christophe
    El Kolei, Salima
    Navarro, Fabien
    STATISTICAL PAPERS, 2022, 63 (05) : 1615 - 1648
  • [7] State Estimation for Flag Hidden Markov Models with Imperfect Sensors
    Doty, Kyle
    Roy, Sandip
    Fischer, Thomas R.
    2016 ANNUAL CONFERENCE ON INFORMATION SCIENCE AND SYSTEMS (CISS), 2016,
  • [8] S-estimation of hidden Markov models
    Farcomeni, Alessio
    Greco, Luca
    COMPUTATIONAL STATISTICS, 2015, 30 (01) : 57 - 80
  • [9] Inference in finite state space non parametric Hidden Markov Models and applications
    Gassiat, E.
    Cleynen, A.
    Robin, S.
    STATISTICS AND COMPUTING, 2016, 26 (1-2) : 61 - 71
  • [10] Identifiability of discrete input-output hidden Markov models with external signals
    David, Etienne
    Bellot, Jean
    Le Corff, Sylvain
    Lehericy, Luc
    STATISTICS AND COMPUTING, 2024, 34 (01)