Optimum structural properties for an anode current collector used in a polymer electrolyte membrane water electrolyzer operated at the boiling point of water

被引:42
作者
Li, Hua [1 ]
Fujigaya, Tsuyohiko [2 ]
Nakajima, Hironori [1 ]
Inada, Akiko [1 ]
Ito, Kohei [1 ,2 ]
机构
[1] Kyushu Univ, Grad Sch Engn, Dept Hydrogen Energy Syst, Nishi Ku, 744 Motooka, Fukuoka, Fukuoka 8190395, Japan
[2] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, Nishi Ku, 744 Motooka, Fukuoka, Fukuoka 8190395, Japan
基金
日本科学技术振兴机构;
关键词
Current collector; Thickness; Contact angle; Pore diameter; Electrolysis voltage; Body; HIGH-TEMPERATURE OPERATION; OXYGEN EVOLUTION REACTION; FUEL-CELLS; COMPOSITE MEMBRANE; PERFORMANCE; ELECTROCATALYST; SUPPORTS; CATALYST;
D O I
10.1016/j.jpowsour.2016.09.086
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study attempts to optimize the properties of the anode current collector of a polymer electrolyte membrane water electrolyzer at high temperatures, particularly at the boiling point of water. Different titanium meshes (4 commercial ones and 4 modified ones) with various properties are experimentally examined by operating a cell with each mesh under different conditions. The average pore diameter, thickness, and contact angle of the anode current collector are controlled in the ranges of 10-35 mu m, 0.2 -0.3 mm, and 0-120 degrees, respectively. These results showed that increasing the temperature from the conventional temperature of 80 degrees C to the boiling point could reduce both the open circuit voltage and the overvoltages to a large extent without notable dehydration of the membrane. These results also showed that decreasing the contact angle and the thickness suppresses the electrolysis overvoltage largely by decreasing the concentration overvoltage. The effect of the average pore diameter was not evident until the temperature reached the boiling point. Using operating conditions of 100 degrees C and 2 A/cm(2), the electrolysis voltage is minimized to 1.69 V with a hydrophilic titanium mesh with an average pore diameter of 21 mu m and a thickness of 0.2 mm. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:16 / 23
页数:8
相关论文
共 37 条
[1]   High temperature operation of a composite membrane-based solid polymer electrolyte water electrolyser [J].
Antonucci, V. ;
Di Blasi, A. ;
Baglio, V. ;
Ornelas, R. ;
Matteucci, F. ;
Ledesma-Garcia, J. ;
Arriaga, L. G. ;
Arico, A. S. .
ELECTROCHIMICA ACTA, 2008, 53 (24) :7350-7356
[2]   Solid Polymer Electrolyte Water Electrolyser Based on Nafion-TiO2 Composite Membrane for High Temperature Operation [J].
Baglio, V. ;
Ornelas, R. ;
Matteucci, F. ;
Martina, F. ;
Ciccarella, G. ;
Zama, I. ;
Arriaga, L. G. ;
Antonucci, V. ;
Arico, A. S. .
FUEL CELLS, 2009, 9 (03) :247-252
[3]   Temperature and pressure dependence of O2 reduction at Pt | Nafion® 117 and Pt | BAM® 407 interfaces [J].
Beattie, PD ;
Basura, VI ;
Holdcroft, S .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1999, 468 (02) :180-192
[4]   A comprehensive review on PEM water electrolysis [J].
Carmo, Marcelo ;
Fritz, David L. ;
Merge, Juergen ;
Stolten, Detlef .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (12) :4901-4934
[5]   Synthesis, structure and physical properties of the one-dimensional chain complex of tetrathiafulvalene carboxylate [J].
Chen Ya ;
Li ChengHui ;
Wang CaiFeng ;
Wu Di ;
Zuo JingLin ;
You XiaoZeng .
SCIENCE IN CHINA SERIES B-CHEMISTRY, 2009, 52 (10) :1596-1601
[6]   Study of carbon-supported IrO2 and RuO2 for use in the hydrogen evolution reaction in a solid polymer electrolyte electrolyzer [J].
Cheng, Jinbin ;
Zhang, Huamin ;
Ma, Haipeng ;
Zhong, Hexiang ;
Zou, Yi .
ELECTROCHIMICA ACTA, 2010, 55 (05) :1855-1861
[7]  
Choi Chiwoong, 2009, ECI INT C BIOL HEAT, P3
[8]   Nanosized IrO2 electrocatalysts for oxygen evolution reaction in an SPE electrolyzer [J].
Cruz, J. C. ;
Baglio, V. ;
Siracusano, S. ;
Ornelas, R. ;
Ortiz-Frade, L. ;
Arriaga, L. G. ;
Antonucci, V. ;
Arico, A. S. .
JOURNAL OF NANOPARTICLE RESEARCH, 2011, 13 (04) :1639-1646
[9]  
Dai Xianming, 2013, APPL PHYS LETT, V103
[10]   High-pressure PEM water electrolysis and corresponding safety issues [J].
Grigoriev, S. A. ;
Porembskiy, V. I. ;
Korobtsev, S. V. ;
Fateev, V. N. ;
Aupretre, F. ;
Millet, P. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (03) :2721-2728