Tame functions are semismooth

被引:39
作者
Bolte, Jerome [1 ]
Daniilidis, Aris [3 ]
Lewis, Adrian [2 ]
机构
[1] Univ Paris 06, Equipe Combinatoire & Optimisat, Case 189, F-75252 Paris 05, France
[2] Cornell Univ, Sch ORIE, Ithaca, NY 14853 USA
[3] Univ Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Spain
关键词
semismoothness; semi-algebraic function; o-minimal structure; nonsmooth Newton method; structured optimization problem; superlinear convergence; O-MINIMAL STRUCTURES;
D O I
10.1007/s10107-007-0166-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Superlinear convergence of the Newton method for nonsmooth equations requires a "semismoothness" assumption. In this work we prove that locally Lipschitz functions definable in an o-minimal structure (in particular semialgebraic or globally subanalytic functions) are semismooth. Semialgebraic, or more generally, globally subanalytic mappings present the special interest of being gamma-order semismooth, where gamma is a positive parameter. As an application of this new estimate, we prove that the error at the kth step of the Newton method behaves like O(2(-(1+gamma)k)).
引用
收藏
页码:5 / 19
页数:15
相关论文
共 26 条
[1]  
[Anonymous], 1990, CLASSICS APPL MATH
[2]  
[Anonymous], 1997, SIAM J CONTROL OPTIM
[3]  
[Anonymous], 2003, SPRINGER SERIES OPER, DOI DOI 10.1007/978-0-387-21815-16
[4]  
[Anonymous], 1990, Real Algebraic and Semi-Algebraic Sets
[5]  
BIERSTONE E, 1988, PUBL MATH-PARIS, V67, P5
[6]  
Bochnak, 2013, REAL ALGEBRAIC GEOME
[7]  
Bolte J., 2005, ANN POL MATH, V87, P13
[8]   THE LOJASIEWICZ INEQUALITY FOR NONSMOOTH SUBANALYTIC FUNCTIONS WITH APPLICATIONS TO SUBGRADIENT DYNAMICAL SYSTEMS [J].
Bolte, Jerome ;
Daniilidis, Aris ;
Lewis, Adrian .
SIAM JOURNAL ON OPTIMIZATION, 2007, 17 (04) :1205-1223
[9]   A nonsmooth Morse-Sard theorem for subanalytic functions [J].
Bolte, Jerome ;
Daniilidis, Aris ;
Lewis, Adrian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 321 (02) :729-740
[10]  
BONNANS F, 2002, MATH APPL, V27