Electrolytes for advanced lithium ion batteries using silicon-based anodes

被引:115
作者
Xu, Zhixin [1 ]
Yang, Jun [1 ]
Li, Hongping [1 ]
Nuli, Yanna [1 ]
Wang, Jiulin [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai Electrochem Energy Devices Res Ctr, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROCHEMICAL PERFORMANCE; FLUOROETHYLENE CARBONATE; LIQUID ELECTROLYTE; SI ANODES; COMPOSITE ANODE; CYCLING PERFORMANCE; VINYLENE CARBONATE; INTERFACIAL PROPERTIES; RECHARGEABLE BATTERY; POLYMER ELECTROLYTE;
D O I
10.1039/c9ta01876j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In recent years, rechargeable lithium-ion batteries (LIBs), which typically consist of a graphite anode and a lithium transition-metal oxide cathode, have been developed rapidly and widely used for various portable electronic devices, even for (hybrid) electric vehicles and grid-scale energy storage. However, the energy density of state-of-the-art LIBs is not high enough for more application extensions, such as 5G communication, robotics, and future all-electric vehicles competitive with petrol ones. Hence, various high-capacity electrode materials are being intensively investigated. Among them, Si has been regarded as the most promising candidate for the next generation of LIBs, because of its high theoretical capacity, low cost, and acceptable operation potential. Nonetheless, the drastic volume changes during the lithiation/delithiation process often lead to severe pulverization, electrical contact loss, unstable solid-electrolyte interphase, and subsequent poor electrochemical cycling reversibility, which seriously limit its commercialization. Herein, the significant progress in advanced electrolytes for Si-based anodes designed in terms of improving capacity retention and safety is systematically summarized. Additionally, the proposed mechanisms for the interphase formation between the electrolyte and electrode are also illuminated in detail. We hope that researchers can obtain a clear perspective of Si-based LIB electrolytes and be stimulated with more extensive interest in the exploration of effective electrolyte systems for various electrochemical power systems with high energy densities.
引用
收藏
页码:9432 / 9446
页数:15
相关论文
共 50 条
  • [31] Design of multifunctional polymeric binders in silicon anodes for lithium-ion batteries
    Ramdhiny, Masytha Nuzula
    Jeon, Ju-Won
    CARBON ENERGY, 2024, 6 (04)
  • [32] Doped and reactive silicon thin film anodes for lithium ion batteries: A review
    Salah, Mohammed
    Hall, Colin
    Murphy, Peter
    Francis, Candice
    Kerr, Robert
    Stoehr, Bastian
    Rudd, Sam
    Fabretto, Manrico
    JOURNAL OF POWER SOURCES, 2021, 506 (506)
  • [33] Utilizing carbon nanofibers with MnO2 coating for high-performance silicon-based anodes of lithium-ion batteries
    Zhang, Ranshuo
    Sun, Chuxiao
    Jia, Fudong
    Wang, Fangfang
    Li, Silong
    Sang, Jingjing
    Gao, Chao
    Xu, Yanpei
    Wang, Qi
    JOURNAL OF ENERGY STORAGE, 2025, 110
  • [34] Organosilicon Functionalized Electrolytes for Lithium-Ion Batteries
    Wang, Jinglun
    Ran, Qin
    Han, Chongyu
    Tang, Zilong
    Chen, Qiduo
    Qin, Xueying
    PROGRESS IN CHEMISTRY, 2020, 32 (04) : 467 - 480
  • [35] Multivalent Amide-Hydrogen-Bond Supramolecular Binder Enhances the Cyclic Stability of Silicon-Based Anodes for Lithium-Ion Batteries
    Deng, Li
    Deng, Sai-Sai
    Pan, Si-Yu
    Wu, Zhan-Yu
    Hu, Yi-Yang
    Li, Kai
    Zhou, Yao
    Li, Jun-Tao
    Huang, Ling
    Sun, Shi-Gang
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (19) : 22567 - 22576
  • [36] Surface and Interface Engineering of Silicon-Based Anode Materials for Lithium-Ion Batteries
    Luo, Wei
    Chen, Xinqi
    Xia, Yuan
    Chen, Miao
    Wang, Lianjun
    Wang, Qingqing
    Li, Wei
    Yang, Jianping
    ADVANCED ENERGY MATERIALS, 2017, 7 (24)
  • [37] Recent Research Progress of Silicon-Based Anode Materials for Lithium-Ion Batteries
    Du, Aimin
    Li, Hang
    Chen, Xinwen
    Han, Yeyang
    Zhu, Zhongpan
    Chu, Chuanchuan
    CHEMISTRYSELECT, 2022, 7 (19):
  • [38] Recent advances of silicon-based solid-state lithium-ion batteries
    Chen, Xin
    Fu, Chuankai
    Wang, Yuanheng
    Yan, Jiaxin
    Ma, Yulin
    Huo, Hua
    Zuo, Pengjian
    Yin, Geping
    Gao, Yunzhi
    ETRANSPORTATION, 2024, 19
  • [39] Research Progress of Silicon Suboxide-Based Anodes for Lithium-Ion Batteries
    Zhou, Xiaozhong
    Qi, Zhaoyi
    Liu, Qiang
    Tian, Jibin
    Liu, Mingxia
    Dong, Kaifa
    Lei, Ziqiang
    FRONTIERS IN MATERIALS, 2021, 7 (07):
  • [40] Exploring silicon nanoparticles and nanographite-based anodes for lithium-ion batteries
    Thombare, Sohan
    Patil, Rohan
    Humane, Ranjit
    Kale, Bharat
    Kalubarme, Ramchandra
    Malavekar, Dhanaji
    Phadatare, Manisha
    Lokhande, Chandrakant
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2024, 35 (21)