A new computation of the critical point for the planar random-cluster model with q ≥ 1

被引:12
作者
Duminil-Copin, Hugo [1 ]
Raoufi, Aran [1 ]
Tassion, Vincent [1 ]
机构
[1] Univ Geneva, Dept Math, Geneva, Switzerland
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2018年 / 54卷 / 01期
关键词
Phase transition; Random-cluster model; Potts model; Critical point; Sharp phase transition; ZERO-ONE LAW; VORONOI PERCOLATION;
D O I
10.1214/16-AIHP809
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a new computation of the critical value of the random-cluster model with cluster weight q >= 1 on Z(2). This provides an alternative approach to the result in (Probab. Theory Related Fields 153 (2012) 511-542). We believe that this approach has several advantages. First, most of the proof can easily be extended to other planar graphs with sufficient symmetries. Furthermore, it invokes RSW-type arguments which are not based on self-duality. And finally, it contains a new way of applying sharp threshold results which avoid the use of symmetric events and periodic boundary conditions. Some of the new methods presented in this paper have a larger scope than the planar random-cluster model, and may be useful to investigate sharp threshold phenomena for more general dependent percolation processes in arbitrary dimensions.
引用
收藏
页码:422 / 436
页数:15
相关论文
共 17 条
[1]   The self-dual point of the two-dimensional random-cluster model is critical for q ≥ 1 [J].
Beffara, Vincent ;
Duminil-Copin, Hugo .
PROBABILITY THEORY AND RELATED FIELDS, 2012, 153 (3-4) :511-542
[2]   The critical probability for random Voronoi percolation in the plane is 1/2 [J].
Bollobas, Bela ;
Riordan, Oliver .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 136 (03) :417-468
[3]   A short proof of the Harris-Kesten theorem [J].
Bollobas, Bela ;
Riordan, Oliver .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 :470-484
[4]   THE INFLUENCE OF VARIABLES IN PRODUCT-SPACES [J].
BOURGAIN, J ;
KAHN, J ;
KALAI, G ;
KATZNELSON, Y ;
LINIAL, N .
ISRAEL JOURNAL OF MATHEMATICS, 1992, 77 (1-2) :55-64
[5]  
Duminil-Copin H., 2013, ENSAIOS MATEMATICOS, V25
[6]   Absence of Infinite Cluster for Critical Bernoulli Percolation on Slabs [J].
Duminil-Copin, Hugo ;
Sidoravicius, Vladas ;
Tassion, Vincent .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (07) :1397-1411
[7]  
Duminil-Copin H, 2016, PROBAB THEORY REL, V164, P865, DOI 10.1007/s00440-015-0621-0
[8]   RANDOM-CLUSTER MODEL .1. INTRODUCTION AND RELATION TO OTHER MODELS [J].
FORTUIN, CM ;
KASTELEYN, PW .
PHYSICA, 1972, 57 (04) :536-+
[9]   GREEDY LATTICE ANIMALS II: LINEAR GROWTH [J].
Gandolfi, Alberto ;
Kesten, Harry .
ANNALS OF APPLIED PROBABILITY, 1994, 4 (01) :76-107
[10]   Influence and sharp-threshold theorems for monotonic measures [J].
Graham, B. T. ;
Grimmett, G. R. .
ANNALS OF PROBABILITY, 2006, 34 (05) :1726-1745