Arbitrage-free SVI volatility surfaces

被引:99
作者
Gatheral, Jim [1 ]
Jacquier, Antoine [2 ]
机构
[1] CUNY Bernard M Baruch Coll, Dept Math, New York, NY 10010 USA
[2] Univ London Imperial Coll Sci Technol & Med, Dept Math, London, England
关键词
Volatility smile fitting; Volatility surfaces; Arbitrage pricing; Arbitrage relationship; Financial engineering; Financial mathematics; C60; C63; G12; G13; G; IMPLIED VOLATILITY; PRICES;
D O I
10.1080/14697688.2013.819986
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this article, we show how to calibrate the widely used SVI parameterization of the implied volatility smile in such a way as to guarantee the absence of static arbitrage. In particular, we exhibit a large class of arbitrage-free SVI volatility surfaces with a simple closed-form representation. We demonstrate the high quality of typical SVI fits with a numerical example using recent SPX options data.
引用
收藏
页码:59 / 71
页数:13
相关论文
共 25 条
[11]   Arbitrage-free smoothing of the implied volatility surface [J].
Fengler, Matthias R. .
QUANTITATIVE FINANCE, 2009, 9 (04) :417-428
[12]  
Follmer Hans, 2004, De Gruyter Studies in Mathematics, V27
[13]  
Gatheral J., 2004, GLOB DER
[14]  
Gatheral J., 2011, The Volatility Surface: A Practitioners Guide
[15]   Convergence of Heston to SVI [J].
Gatheral, Jim ;
Jacquier, Antoine .
QUANTITATIVE FINANCE, 2011, 11 (08) :1129-1132
[16]   Arbitrage-free approximation of call price surfaces and input data risk [J].
Glaser, Judith ;
Heider, Pascal .
QUANTITATIVE FINANCE, 2012, 12 (01) :61-73
[17]   Comparison results for stochastic volatility models via coupling [J].
Hobson, David .
FINANCE AND STOCHASTICS, 2010, 14 (01) :129-152
[18]  
Jackel P., 2007, WILMOTT MAGAZINE, V2018, P70
[19]  
Kahale N., 2004, RISK, V17, P102
[20]  
Karatzas Ioannis, 2014, Brownian Motion and Stochastic Calculus, V113