Multi-modal classification of Alzheimer's disease using nonlinear graph fusion

被引:166
作者
Tong, Tong [1 ,3 ]
Gray, Katherine [1 ]
Gao, Qinquan [2 ]
Chen, Liang [1 ]
Rueckert, Daniel [1 ]
机构
[1] Imperial Coll London, Dept Comp, Biomed Image Anal Grp, 180 Queens Gate, London SW7 2AZ, England
[2] Fuzhou Univ, Fujian Prov Key Lab Med Instrument & Pharmaceut T, Fuzhou, Peoples R China
[3] MGH Harvard Med Sch, Athinoula A Martins Ctr Biomed Imaging, Lab Computat Neuroimaging, Charlestown, MA USA
关键词
Multiple modalities; Biomarkers; Nonlinear graph fusion; Machine learning; Classification of Alzheimer's disease; MILD COGNITIVE IMPAIRMENT; POSITRON-EMISSION-TOMOGRAPHY; FEATURE-SELECTION; JOINT REGRESSION; DIAGNOSIS; PREDICTION; BIOMARKERS; DEMENTIA; MRI; SEGMENTATION;
D O I
10.1016/j.patcog.2016.10.009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate diagnosis of Alzheimer's disease (AD) and its prodromal stage mild cognitive impairment (MCI) is of great interest to patients and clinicians. Recent studies have demonstrated that multiple neuroimaging and biological measures contain complementary information for diagnosis and prognosis. Classification methods are needed to combine these multiple biomarkers to provide an accurate diagnosis. State-of-the-art approaches calculate a mixed kernel or a similarity matrix by linearly combining kernels or similarities from multiple modalities. However, the complementary information from multi-modal data are not necessarily linearly related. In addition, this linear combination is also sensitive to the weights assigned to each modality. In this paper, we present a multi-modality classification framework to efficiently exploit the complementarity in the multi-modal data. First, pairwise similarity is calculated for each modality individually using the features including regional MRI volumes, voxel-based FDG-PET signal intensities, CSF biomarker measures, and categorical genetic information. Similarities from multiple modalities are then combined in a nonlinear graph fusion process, which generates a unified graph for final classification. Based on the unified graphs, we achieved classification area under curve (AUC) of receiver-operator characteristic of 98.1% between AD subjects and normal controls (NC), 82.4% between MCI subjects and NC and 77.9% in a three-way classification, which are significantly better than those using single-modality biomarkers and those based on state-of-the-art linear combination approaches.
引用
收藏
页码:171 / 181
页数:11
相关论文
共 60 条
[1]  
Alzheimer's A, 2014, ALZHEIMERS DEMENT, V2014, pe47, DOI [DOI 10.1016/J.JALZ.2010.01.009, DOI 10.1016/J.JALZ.2015.02.003]
[2]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[3]   Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge [J].
Bron, Esther E. ;
Smits, Marion ;
van der Flier, Wiesje M. ;
Vrenken, Hugo ;
Barkhof, Frederik ;
Scheltens, Philip ;
Papma, Janne M. ;
Steketee, Rebecca M. E. ;
Orellana, Carolina Mendez ;
Meijboom, Rozanna ;
Pinto, Madalena ;
Meireles, Joana R. ;
Garrett, Carolina ;
Bastos-Leite, Antonio J. ;
Abdulkadir, Ahmed ;
Ronneberger, Olaf ;
Amoroso, Nicola ;
Bellotti, Roberto ;
Cardenas-Pena, David ;
Alvarez-Meza, Andres M. ;
Dolph, Chester V. ;
Iftekharuddin, Khan M. ;
Eskildsen, Simon F. ;
Coupe, Pierrick ;
Fonov, Vladimir S. ;
Franke, Katja ;
Gaser, Christian ;
Ledig, Christian ;
Guerrero, Ricardo ;
Tong, Tong ;
Gray, Katherine R. ;
Moradi, Elaheh ;
Tohka, Jussi ;
Routier, Alexandre ;
Durrleman, Stanley ;
Sarica, Alessia ;
Di Fatta, Giuseppe ;
Sensi, Francesco ;
Chincarini, Andrea ;
Smith, Garry M. ;
Stoyanov, Zhivko V. ;
Sorensen, Lauge ;
Nielsen, Mads ;
Tangaro, Sabina ;
Inglese, Paolo ;
Wachinger, Christian ;
Reuter, Martin ;
van Swieten, John C. ;
Niessen, Wiro J. ;
Klein, Stefan .
NEUROIMAGE, 2015, 111 :562-579
[4]   Forecasting the global burden of Alzheimer's disease [J].
Brookmeyer, Ron ;
Johnson, Elizabeth ;
Ziegler-Graham, Kathryn ;
Arrighi, H. Michael .
ALZHEIMERS & DEMENTIA, 2007, 3 (03) :186-191
[5]   Simultaneous segmentation and grading of anatomical structures for patient's classification: Application to Alzheimer's disease [J].
Coupe, Pierrick ;
Eskildsen, Simon F. ;
Manjon, Jose V. ;
Fonov, Vladimir S. ;
Collins, D. Louis .
NEUROIMAGE, 2012, 59 (04) :3736-3747
[6]   Use of SVM Methods with Surface-Based Cortical and Volumetric Subcortical Measurements to Detect Alzheimer's Disease [J].
de Magalhaes Oliveira, Pedro Paulo, Jr. ;
Nitrini, Ricardo ;
Busatto, Geraldo ;
Buchpiguel, Carlos ;
Sato, Joao Ricardo ;
Amaro, Edson, Jr. .
JOURNAL OF ALZHEIMERS DISEASE, 2010, 19 (04) :1263-1272
[7]   Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning [J].
Eskildsen, Simon F. ;
Coupe, Pierrick ;
Garcia-Lorenzo, Daniel ;
Fonov, Vladimir ;
Pruessner, Jens C. ;
Collins, D. Louis .
NEUROIMAGE, 2013, 65 :511-521
[8]   Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest [J].
Gousias, Ioannis S. ;
Rueckert, Daniel ;
Heckemann, Rolf A. ;
Dyet, Leigh E. ;
Boardman, James P. ;
Edwards, A. David ;
Hammers, Alexander .
NEUROIMAGE, 2008, 40 (02) :672-684
[9]   Random forest-based similarity measures for multi-modal classification of Alzheimer's disease [J].
Gray, Katherine R. ;
Aljabar, Paul ;
Heckemann, Rolf A. ;
Hammers, Alexander ;
Rueckert, Daniel .
NEUROIMAGE, 2013, 65 :167-175
[10]   Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe [J].
Hammers, A ;
Allom, R ;
Koepp, MJ ;
Free, SL ;
Myers, R ;
Lemieux, L ;
Mitchell, TN ;
Brooks, DJ ;
Duncan, JS .
HUMAN BRAIN MAPPING, 2003, 19 (04) :224-247