Quantum geometric tensor in PT-symmetric quantum mechanics

被引:49
作者
Zhang, Da-Jian [1 ]
Wang, Qing-Hai [1 ]
Gong, Jiangbin [1 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
基金
中国国家自然科学基金;
关键词
PHYSICS;
D O I
10.1103/PhysRevA.99.042104
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A series of geometric concepts are formulated for PT-symmetric quantum mechanics and they are further unified into one entity, i.e., an extended quantum geometric tensor (QGT). The imaginary part of the extended QGT gives a Berry curvature whereas the real part induces a metric tensor on the system's parameter manifold. This results in a unified conceptual framework to understand and explore physical properties of PT-symmetric systems from a geometric perspective. To illustrate the usefulness of the extended QGT, we show how its real part, the metric tensor, can be exploited as a tool to detect quantum phase transitions as well as spontaneous PT symmetry breaking in PT-symmetric systems.
引用
收藏
页数:13
相关论文
共 65 条
[1]   Parity-time-symmetric quantum critical phenomena [J].
Ashida, Yuto ;
Furukawa, Shunsuke ;
Ueda, Masahito .
NATURE COMMUNICATIONS, 2017, 8
[2]   Robust wireless power transfer using a nonlinear parity-time-symmetric circuit [J].
Assawaworrarit, Sid ;
Yu, Xiaofang ;
Fan, Shanhui .
NATURE, 2017, 546 (7658) :387-+
[3]   Observation of PT phase transition in a simple mechanical system [J].
Bender, Carl M. ;
Berntson, Bjorn K. ;
Parker, David ;
Samuel, E. .
AMERICAN JOURNAL OF PHYSICS, 2013, 81 (03) :173-179
[4]   Complex extension of quantum mechanics [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
PHYSICAL REVIEW LETTERS, 2002, 89 (27)
[5]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[6]   Observation of Asymmetric Transport in Structures with Active Nonlinearities [J].
Bender, N. ;
Factor, S. ;
Bodyfelt, J. D. ;
Ramezani, H. ;
Christodoulides, D. N. ;
Ellis, F. M. ;
Kottos, T. .
PHYSICAL REVIEW LETTERS, 2013, 110 (23)
[8]   PT Symmetry and Spontaneous Symmetry Breaking in a Microwave Billiard [J].
Bittner, S. ;
Dietz, B. ;
Guenther, U. ;
Harney, H. L. ;
Miski-Oglu, M. ;
Richter, A. ;
Schaefer, F. .
PHYSICAL REVIEW LETTERS, 2012, 108 (02)
[9]  
Bohm A., 2003, TEXT MONOGR
[10]   Geometric phases and criticality in spin-chain systems [J].
Carollo, ACM ;
Pachos, JK .
PHYSICAL REVIEW LETTERS, 2005, 95 (15)