The Fermi-Pasta-Ulam Problem and Its Underlying Integrable Dynamics: An Approach Through Lyapunov Exponents

被引:21
作者
Benettin, G. [1 ]
Pasquali, S. [2 ]
Ponno, A. [1 ]
机构
[1] Univ Padua, Dipartimento Matemat Tullio Levi Civita, Via Trieste 63, I-35121 Padua, Italy
[2] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy
关键词
Fermi-Pasta-Ulam; Toda model; Lyapunov exponents; Thermodynamic limit; STOCHASTICITY THRESHOLDS; RELAXATION; CHAIN;
D O I
10.1007/s10955-018-2017-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
FPU models, in dimension one, are perturbations either of the linear model or of the Toda model; perturbations of the linear model include the usual -model, perturbations of Toda include the usual model. In this paper we explore and compare two families, or hierarchies, of FPU models, closer and closer to either the linear or the Toda model, by computing numerically, for each model, the maximal Lyapunov exponent . More precisely, we consider statistically typical trajectories and study the asymptotics of for large N (the number of particles) and small (the specific energy E / N), and find, for all models, asymptotic power laws , C and a depending on the model. The asymptotics turns out to be, in general, rather slow, and producing accurate results requires a great computational effort. We also revisit and extend the analytic computation of introduced by Casetti, Livi and Pettini, originally formulated for the -model. With great evidence the theory extends successfully to all models of the linear hierarchy, but not to models close to Toda.
引用
收藏
页码:521 / 542
页数:22
相关论文
共 49 条
[1]  
Ablowitz M.J., 2003, Complex Variables
[2]   STOCHASTIC-TRANSITION IN TWO-DIMENSIONAL LENNARD-JONES SYSTEMS [J].
BENETTIN, G ;
LOVECCHIO, G ;
TENENBAUM, A .
PHYSICAL REVIEW A, 1980, 22 (04) :1709-1719
[3]   KOLMOGOROV ENTROPY AND NUMERICAL EXPERIMENTS [J].
BENETTIN, G ;
GALGANI, L ;
STRELCYN, JM .
PHYSICAL REVIEW A, 1976, 14 (06) :2338-2345
[4]   The Fermi-Pasta-Ulam Problem and Its Underlying Integrable Dynamics [J].
Benettin, G. ;
Christodoulidi, H. ;
Ponno, A. .
JOURNAL OF STATISTICAL PHYSICS, 2013, 152 (02) :195-212
[5]   Time-Scales to Equipartition in the Fermi-Pasta-Ulam Problem: Finite-Size Effects and Thermodynamic Limit [J].
Benettin, G. ;
Ponno, A. .
JOURNAL OF STATISTICAL PHYSICS, 2011, 144 (04) :793-812
[6]   On the numerical integration of FPU-like systems [J].
Benettin, G. ;
Ponno, A. .
PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (07) :568-573
[7]   ON THE HAMILTONIAN INTERPOLATION OF NEAR-TO-THE-IDENTITY SYMPLECTIC MAPPINGS WITH APPLICATION TO SYMPLECTIC INTEGRATION ALGORITHMS [J].
BENETTIN, G ;
GIORGILLI, A .
JOURNAL OF STATISTICAL PHYSICS, 1994, 74 (5-6) :1117-1143
[8]   The Fermi-Pasta-Ulam Problem: Scaling Laws vs. Initial Conditions [J].
Benettin, G. ;
Livi, R. ;
Ponno, A. .
JOURNAL OF STATISTICAL PHYSICS, 2009, 135 (5-6) :873-893
[9]  
Benettin G., 1980, Meccanica, V15, P9, DOI DOI 10.1007/BF02128236
[10]  
Benettin G., 1980, Meccanica, V15, P21, DOI 10.1007/BF02128237