High Thermoelectric Performance via Hierarchical Compositionally Alloyed Nanostructures

被引:364
作者
Zhao, Li-Dong [1 ]
Hao, Shiqiang [2 ]
Lo, Shih-Han [2 ]
Wu, Chun-I [3 ]
Zhou, Xiaoyuan [4 ]
Lee, Yeseul [1 ]
Li, Hao [1 ]
Biswas, Kanishka [1 ]
Hogan, Timothy P. [3 ]
Uher, Ctirad [4 ]
Wolverton, C. [2 ]
Dravid, Vinayak P. [2 ]
Kanatzidis, Mercouri G. [1 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[3] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
[4] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
P-TYPE PBSE; FIGURE; EFFICIENCY; MERIT; PBTE;
D O I
10.1021/ja403134b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Previous efforts to enhance thermoelectric performance have primarily focused on reduction in lattice thermal conductivity caused by broad-based phonon scattering across multiple length scales. Herein, we demonstrate a design strategy which provides for simultaneous improvement of electrical and thermal properties of p-type PbSe and leads to ZT similar to 1.6 at 923 K, the highest ever reported for a tellurium-free chalcogenide. Our strategy goes beyond the recent ideas of reducing thermal conductivity by adding two key new theory-guided concepts in engineering, both electronic structure and band alignment across nanostructure-matrix interface. Utilizing density functional theory for calculations of valence band energy levels of nanoscale precipitates of CdS, CdSe, ZnS, and ZnSe, we infer favorable valence band alignments between PbSe and compositionally alloyed nanostructures of CdS1-xSex/ZnS1-xSex. Then by alloying Cd on the cation sublattice of PbSe, we tailor the electronic structure of its two valence bands (light hole L and heavy hole Sigma) to move closer in energy, thereby enabling the enhancement of the Seebeck coefficients and the power factor.
引用
收藏
页码:7364 / 7370
页数:7
相关论文
共 37 条
[1]   Nature of hole localization centers in sodium-doped lead chalcogenides [J].
Alekseeva, GT ;
Gurieva, EA ;
Konstantinov, PP ;
Prokofeva, LV ;
Ravich, YI .
SEMICONDUCTORS, 1997, 31 (05) :446-448
[2]   Thermoelectrics from Abundant Chemical Elements: High-Performance Nanostructured PbSe-PbS [J].
Androulakis, John ;
Todorov, Iliya ;
He, Jiaqing ;
Chung, Duck-Young ;
Dravid, Vinayak ;
Kanatzidis, Mercouri .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (28) :10920-10927
[3]  
Bhandari C. M., 1995, CRC HDB THERMOELECTR, P45
[4]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[5]  
Biswas K, 2011, NAT CHEM, V3, P160, DOI [10.1038/nchem.955, 10.1038/NCHEM.955]
[6]   Recent developments in thermoelectric materials [J].
Chen, G ;
Dresselhaus, MS ;
Dresselhaus, G ;
Fleurial, JP ;
Caillat, T .
INTERNATIONAL MATERIALS REVIEWS, 2003, 48 (01) :45-66
[7]   Preparation of clean Bi2Te3 and Sb2Te3 thin films to determine alignment at valence band maxima [J].
Fang, Fang ;
Opila, Robert L. ;
Venkatasubramanian, Rama ;
Colpitts, Thomas .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2011, 29 (03)
[8]   Quantum dot superlattice thermoelectric materials and devices [J].
Harman, TC ;
Taylor, PJ ;
Walsh, MP ;
LaForge, BE .
SCIENCE, 2002, 297 (5590) :2229-2232
[9]   Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states [J].
Heremans, Joseph P. ;
Jovovic, Vladimir ;
Toberer, Eric S. ;
Saramat, Ali ;
Kurosaki, Ken ;
Charoenphakdee, Anek ;
Yamanaka, Shinsuke ;
Snyder, G. Jeffrey .
SCIENCE, 2008, 321 (5888) :554-557
[10]   Resonant levels in bulk thermoelectric semiconductors [J].
Heremans, Joseph P. ;
Wiendlocha, Bartlomiej ;
Chamoire, Audrey M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) :5510-5530