Non-linear stability of the equilibria in the gravity field of a finite straight segment

被引:55
|
作者
Riaguas, A [1 ]
Elipe, A [1 ]
López-Moratalla, T [1 ]
机构
[1] Univ Zaragoza, Grp Mecan Espacial, E-50009 Zaragoza, Spain
关键词
normal forms; stability;
D O I
10.1023/A:1013217913585
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the non-linear stability of the equilibria corresponding to the motion of a particle orbiting around a finite straight segment. The potential is a logarithmic function and may be considered as an approximation to the one generated by elongated celestial bodies. By means of the Arnold's theorem for non-definite quadratic forms we determine the orbital stability of the equilibria, for all values of the parameter k of the problem, resonant cases included.
引用
收藏
页码:235 / 248
页数:14
相关论文
共 50 条
  • [41] Non-linear non-interacting control with stability in discrete time: a dynamic solution
    Califano, C
    Monaco, S
    Normand-Cyrot, D
    INTERNATIONAL JOURNAL OF CONTROL, 2005, 78 (06) : 443 - 459
  • [42] A matrix pencil approach to the local stability analysis of non-linear circuits
    Riaza, R
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2004, 32 (01) : 23 - 46
  • [43] Stability of stationary fronts in a non-linear wave equation with spatial inhomogeneity
    Knight, Christopher J. K.
    Derks, Gianne
    Doelman, Arjen
    Susanto, Hadi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (02) : 408 - 468
  • [44] Applications of Subpositive Definite Matrices for Stability of General Non-Linear Systems
    Liu, Feng
    Shi, Guodong
    Weng, Zhiqing
    2009 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 4, 2009, : 367 - +
  • [45] Non-linear elastic stability of rectangular frames under various loading
    Kabir, MZ
    Moslehitabar, A
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, 2004, 28 (B5): : 615 - 618
  • [46] A beam finite element for non-linear analyses of thin-walled elements
    Mohri, F.
    Eddinari, A.
    Damil, N.
    Ferry, M. Potier
    THIN-WALLED STRUCTURES, 2008, 46 (7-9) : 981 - 990
  • [47] Finite-time control for a fractional-order non-linear HTGS
    Wu, Fengjiao
    Li, Fei
    Chen, Peng
    Wang, Bin
    IET RENEWABLE POWER GENERATION, 2019, 13 (04) : 633 - 639
  • [48] Global finite-time stabilisation of a class of feedforward non-linear systems
    Zhang, X.
    Feng, G.
    IET CONTROL THEORY AND APPLICATIONS, 2011, 5 (12) : 1450 - 1457
  • [49] Sensitivity of structural response in context of linear and non-linear buckling analysis with solid shell finite elements
    Radau, Lukas
    Gerzen, Nikolai
    Barthold, Franz-Joseph
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2017, 55 (06) : 2259 - 2283