Non-linear stability of the equilibria in the gravity field of a finite straight segment

被引:55
|
作者
Riaguas, A [1 ]
Elipe, A [1 ]
López-Moratalla, T [1 ]
机构
[1] Univ Zaragoza, Grp Mecan Espacial, E-50009 Zaragoza, Spain
关键词
normal forms; stability;
D O I
10.1023/A:1013217913585
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the non-linear stability of the equilibria corresponding to the motion of a particle orbiting around a finite straight segment. The potential is a logarithmic function and may be considered as an approximation to the one generated by elongated celestial bodies. By means of the Arnold's theorem for non-definite quadratic forms we determine the orbital stability of the equilibria, for all values of the parameter k of the problem, resonant cases included.
引用
收藏
页码:235 / 248
页数:14
相关论文
共 50 条
  • [21] Stability of Nonclassical Relative Equilibria of a Rigid Body in a J2 Gravity Field
    Wang, Yue
    Xu, Shijie
    JOURNAL OF AEROSPACE ENGINEERING, 2016, 29 (06)
  • [22] Non-linear stability analysis of a hybrid barrel vault roof
    Cai, Jianguo
    Zhou, Ya
    Xu, Yixiang
    Feng, Jian
    STEEL AND COMPOSITE STRUCTURES, 2013, 14 (06) : 571 - 586
  • [23] Dynamics and Stability of Hopf Bifurcation for One Non-linear System
    Hadziabdic, Vahidin
    Mehuljic, Midhat
    Bektesevic, Jasmin
    Masic, Adnan
    TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2021, 10 (02): : 820 - 824
  • [24] Nonstandard finite difference schemes for linear and non-linear Fokker-Planck equations
    Neena, A. S.
    Clemence-Mkhope, Dominic P.
    Awasthi, Ashish
    JOURNAL OF ENGINEERING MATHEMATICS, 2024, 145 (01)
  • [25] STABILITY ANALYSIS OF NON-LINEAR PLATES COUPLED WITH DARCY FLOWS
    Aulisa, Eugenio
    Ibragimov, Akif
    Kaya-Cekin, Emine Yasemen
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2013, 2 (02): : 193 - 232
  • [26] Stability conditions for a non-linear size-structured model
    Farkas, JZ
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2005, 6 (05) : 962 - 969
  • [27] Non-linear dynamic stability of shallow reticulated spherical shells
    Han, Ming-Jun
    Li, You-tang
    Qiu, Ping
    Wang, Xin-zhi
    INTELLIGENT MATERIALS, APPLIED MECHANICS AND DESIGN SCIENCE, 2012, 142 : 107 - +
  • [28] The numerical simulation of non-linear non-radial stellar pulsations: a conservative formulation of gravity
    Glatzel, W.
    Chernigovski, S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 457 (02) : 1190 - 1197
  • [29] Finite-time regional verification of stochastic non-linear systems
    Steinhardt, Jacob
    Tedrake, Russ
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2012, 31 (07) : 901 - 923
  • [30] Simple and straight proofs of stability criteria for finite-dimensional linear time invariant systems
    Kavitha, Panneerselvam
    Ramakalyan, Ayyagari
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2014, 36 (04) : 523 - 528