Non-linear stability of the equilibria in the gravity field of a finite straight segment

被引:55
|
作者
Riaguas, A [1 ]
Elipe, A [1 ]
López-Moratalla, T [1 ]
机构
[1] Univ Zaragoza, Grp Mecan Espacial, E-50009 Zaragoza, Spain
关键词
normal forms; stability;
D O I
10.1023/A:1013217913585
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the non-linear stability of the equilibria corresponding to the motion of a particle orbiting around a finite straight segment. The potential is a logarithmic function and may be considered as an approximation to the one generated by elongated celestial bodies. By means of the Arnold's theorem for non-definite quadratic forms we determine the orbital stability of the equilibria, for all values of the parameter k of the problem, resonant cases included.
引用
收藏
页码:235 / 248
页数:14
相关论文
共 50 条
  • [1] Non-linear stability of the equilibria in the gravity field of a finite straight segment
    Andrés Riaguas
    Antonio Elipe
    Teodoro López-Moratalla
    Celestial Mechanics and Dynamical Astronomy, 2001, 81 : 235 - 248
  • [2] The non-linear regime of gravity
    Lehner, Luis
    GENERAL RELATIVITY AND GRAVITATION, 2025, 57 (03)
  • [3] Stability of homogeneous non-linear systems
    Kharrat, Thouraya
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2017, 34 (02) : 451 - 461
  • [4] Non-linear spring equations and stability
    Fay, Temple H.
    Joubert, Stephan V.
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2009, 40 (08) : 1069 - 1084
  • [5] On the stability of a class of general non-linear systems
    Gléria, IM
    Figueiredo, A
    Rocha, TM
    PHYSICS LETTERS A, 2001, 291 (01) : 11 - 16
  • [6] Stability conditions for the non-linear McKendrick equations
    Farkas, JZ
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 156 (03) : 771 - 777
  • [7] Finite-time stability of non-linear systems with impulsive effects due to logic choice
    Zhang, Junhui
    Sun, Jitao
    Wang, Qing-Guo
    IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (11) : 1644 - 1648
  • [8] Stochastic stability of non-linear SDOF systems
    Kumar, Deepak
    Datta, T. K.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2007, 42 (06) : 839 - 847
  • [9] LINEAR AND NON-LINEAR STABILITY ANALYSIS OF A SUPERCRITICAL NATURAL CIRCULATION LOOP
    Sharma, Manish
    Vijayan, P. K.
    Pilkhwal, D. S.
    Saha, D.
    Sinha, R. K.
    ICONE 17: PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, VOL 3, 2009, : 395 - 404
  • [10] Non-linear integral inequalities and applications to asymptotic stability
    Hammi, Mekki
    Hammami, Mohamed Ali
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2015, 32 (04) : 717 - 735