Nonresonant tunneling phonon depopulated GaN based terahertz quantum cascade structures

被引:10
作者
Freeman, Will [1 ]
Karunasiri, Gamani [2 ]
机构
[1] USN, Air Warfare Ctr, Div Phys, China Lake, CA 93555 USA
[2] USN, Postgrad Sch, Dept Phys, Monterey, CA 93943 USA
关键词
ELECTRON-ELECTRON SCATTERING; LASERS; ROUGHNESS; TRANSPORT; DESIGN; WELLS;
D O I
10.1063/1.4801947
中图分类号
O59 [应用物理学];
学科分类号
摘要
GaN based terahertz quantum cascade structures are theoretically studied. Since the Frohlich interaction is similar to 15 times higher in GaN than in GaAs, level broadening makes obtaining appreciable optical gain difficult even with a large population inversion. A density matrix Monte Carlo method is used to calculate the broadening of the optical gain spectra as a function of lattice temperature. We find by using a proposed method of nonresonant tunneling and electron-longitudinal-optical phonon scattering for depopulation of the lower lasing state, that it is possible to sufficiently isolate the upper lasing state and control the lower lasing state lifetime to obtain high optical gain in GaN. The results predict lasing out to 300 K which is significantly higher than for GaAs based structures. [http://dx.doi.org/10.1063/1.4801947]
引用
收藏
页数:4
相关论文
共 30 条
[1]   Monte Carlo study of GaN versus GaAs terahertz quantum cascade structures [J].
Bellotti, Enrico ;
Driscoll, Kristina ;
Moustakas, Theodore D. ;
Paiella, Roberto .
APPLIED PHYSICS LETTERS, 2008, 92 (10)
[2]   Importance of electron-impurity scattering for electron transport in terahertz quantum-cascade lasers [J].
Callebaut, H ;
Kumar, S ;
Williams, BS ;
Hu, Q ;
Reno, JL .
APPLIED PHYSICS LETTERS, 2004, 84 (05) :645-647
[3]   High-mobility window for two-dimensional electron gases at ultrathin AlN/GaN heterojunctions [J].
Cao, Yu ;
Jena, Debdeep .
APPLIED PHYSICS LETTERS, 2007, 90 (18)
[4]   Small optical volume terahertz emitting microdisk quantum cascade lasers [J].
Dunbar, L. Andrea ;
Houdre, Romuald ;
Scalari, Giacomo ;
Sirigu, Lorenzo ;
Giovannini, Marcella ;
Faist, Jerome .
APPLIED PHYSICS LETTERS, 2007, 90 (14)
[5]   Continuous-wave operation of λ∼4.8 μm quantum-cascade lasers at room temperature [J].
Evans, A ;
Yu, JS ;
Slivken, S ;
Razeghi, M .
APPLIED PHYSICS LETTERS, 2004, 85 (12) :2166-2168
[6]   Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling [J].
Fathololoumi, S. ;
Dupont, E. ;
Chan, C. W. I. ;
Wasilewski, Z. R. ;
Laframboise, S. R. ;
Ban, D. ;
Matyas, A. ;
Jirauschek, C. ;
Hu, Q. ;
Liu, H. C. .
OPTICS EXPRESS, 2012, 20 (04) :3866-3876
[7]   Nonequilibrium electron leakage in terahertz quantum cascade structures [J].
Freeman, Will ;
Karunasiri, Gamani .
PHYSICAL REVIEW B, 2012, 85 (19)
[8]   Theory of electrical breakdown in ionic crystals [J].
Frohlich, H .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1937, 160 (A901) :0230-0241
[9]   SURFACE-ROUGHNESS AT THE SI(100)-SIO2 INTERFACE [J].
GOODNICK, SM ;
FERRY, DK ;
WILMSEN, CW ;
LILIENTAL, Z ;
FATHY, D ;
KRIVANEK, OL .
PHYSICAL REVIEW B, 1985, 32 (12) :8171-8186
[10]  
Harrison P., 2006, QUANTUM WELLS WIRES, V2nd