Projective representations and relative semisimplicity

被引:3
作者
Aljadeff, E [1 ]
Onn, U
Ginosar, Y
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[2] Brandeis Univ, Dept Math, Waltham, MA 02254 USA
关键词
D O I
10.1006/jabr.1998.7783
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a local (commutative) ring and let p be a prime not invertible in R. Let G be a finite group of order divisible by p. It is well known that the group ring RG admits nonprojective lattices (e.g., R itself with the trivial action). For any element alpha is an element of H-2(G, R*) one can form the twisted group ring R(alpha)G. The "twisting problem" asks whether there exists a class alpha s.t. the corresponding twisted group ring admits only projective lattices. For fields of characteristic p, the answer is in E. Aljadeff and D. J. S. Robinson [J. Pure Appl. Algebra 94 (1994), 1-15]. Here we answer this question for rings of the form Z(Ps), s greater than or equal to 2. The main tools are the classification of modular representation of the Klein 4 group over Z(2) and a Chouinard-like theorem [E. Aljadeff and Y. Ginosar, J. Algebra 179 (1996), 599-606] for twisted group rings. (C) 1999 Academic Press.
引用
收藏
页码:249 / 274
页数:26
相关论文
共 12 条
[1]   SEMISIMPLE ALGEBRAS, GALOIS ACTIONS AND GROUP COHOMOLOGY [J].
ALJADEFF, E ;
ROBINSON, DJS .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1994, 94 (01) :1-15
[2]   Induction from elementary Abelian subgroups [J].
Aljadeff, E ;
Ginosar, Y .
JOURNAL OF ALGEBRA, 1996, 179 (02) :599-606
[3]  
BENSON DJ, 1984, STUDIES ADV MATH, V30
[4]  
Brown K. S., 1982, Cohomology of groups, V87
[5]  
CHOUINARD LG, 1976, J PURE APPL ALGEBRA, V7, P287
[6]  
Gorenstein D., 1980, Finite groups, V2
[7]  
HUPPERT H, 1979, ENDLICHE GRUPPEN, V1
[8]  
KARPILOVSKY G, 1985, PROJECTIVE REPRESENT
[9]  
Robinson D.J.S., 1982, A Course in the Theory of Groups
[10]  
Rotman JJ, 1984, INTRO THEORY GROUPS