Meta-analysis methods for genome-wide association studies and beyond

被引:410
作者
Evangelou, Evangelos [1 ]
Ioannidis, John P. A. [2 ,3 ,4 ]
机构
[1] Univ Ioannina, Sch Med, Dept Hyg & Epidemiol, Clin & Mol Epidemiol Unit, GR-45110 Ioannina, Greece
[2] Stanford Univ, Sch Med, Dept Med, Stanford Prevent Res Ctr, Stanford, CA 94305 USA
[3] Stanford Univ, Sch Med, Dept Hlth Res & Policy, Stanford, CA 94305 USA
[4] Stanford Univ, Sch Human & Sci, Dept Stat, Stanford, CA 94305 USA
关键词
RANDOM-EFFECTS MODEL; LARGE-SCALE; GENETIC ASSOCIATION; SUSCEPTIBILITY LOCI; RARE VARIANTS; GENOTYPE IMPUTATION; IDENTIFIES; 13; POWER; SEQUENCE; COMMON;
D O I
10.1038/nrg3472
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Meta-analysis of genome-wide association studies (GWASs) has become a popular method for discovering genetic risk variants. Here, we overview both widely applied and newer statistical methods for GWAS meta-analysis, including issues of interpretation and assessment of sources of heterogeneity. We also discuss extensions of these meta-analysis methods to complex data. Where possible, we provide guidelines for researchers who are planning to use these methods. Furthermore, we address special issues that may arise for meta-analysis of sequencing data and rare variants. Finally, we discuss challenges and solutions surrounding the goals of making meta-analysis data publicly available and building powerful consortia.
引用
收藏
页码:379 / 389
页数:11
相关论文
共 117 条
[1]   An integrated map of genetic variation from 1,092 human genomes [J].
Altshuler, David M. ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Donnelly, Peter ;
Eichler, Evan E. ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Green, Eric D. ;
Hurles, Matthew E. ;
Knoppers, Bartha M. ;
Korbel, Jan O. ;
Lander, Eric S. ;
Lee, Charles ;
Lehrach, Hans ;
Mardis, Elaine R. ;
Marth, Gabor T. ;
McVean, Gil A. ;
Nickerson, Deborah A. ;
Schmidt, Jeanette P. ;
Sherry, Stephen T. ;
Wang, Jun ;
Wilson, Richard K. ;
Gibbs, Richard A. ;
Dinh, Huyen ;
Kovar, Christie ;
Lee, Sandra ;
Lewis, Lora ;
Muzny, Donna ;
Reid, Jeff ;
Wang, Min ;
Wang, Jun ;
Fang, Xiaodong ;
Guo, Xiaosen ;
Jian, Min ;
Jiang, Hui ;
Jin, Xin ;
Li, Guoqing ;
Li, Jingxiang ;
Li, Yingrui ;
Li, Zhuo ;
Liu, Xiao ;
Lu, Yao ;
Ma, Xuedi ;
Su, Zhe ;
Tai, Shuaishuai ;
Tang, Meifang .
NATURE, 2012, 491 (7422) :56-65
[2]  
[Anonymous], 2009, HDB RES SYNTHESIS ME
[3]  
[Anonymous], STAT METHODS MED RES
[4]  
[Anonymous], ANN REV GEN IN PRESS
[5]   Genome-Wide Meta-Analysis of Joint Tests for Genetic and Gene-Environment Interaction Effects [J].
Aschard, Hugues ;
Hancock, Dana B. ;
London, Stephanie J. ;
Kraft, Peter .
HUMAN HEREDITY, 2010, 70 (04) :292-300
[6]   ARIEL and AMELIA: Testing for an Accumulation of Rare Variants Using Next-Generation Sequencing Data [J].
Asimit, Jennifer L. ;
Day-Williams, Aaron G. ;
Morris, Andrew P. ;
Zeggini, Eleftheria .
HUMAN HEREDITY, 2012, 73 (02) :84-94
[7]   GenABEL: an R library for genome-wide association analysis [J].
Aulchenko, Yurii S. ;
Ripke, Stephan ;
Isaacs, Aaron ;
Van Duijn, Cornelia M. .
BIOINFORMATICS, 2007, 23 (10) :1294-1296
[8]   Rare and Low Frequency Variant Stratification in the UK Population: Description and Impact on Association Tests [J].
Babron, Marie-Claude ;
de Tayrac, Marie ;
Rutledge, Douglas N. ;
Zeggini, Eleftheria ;
Genin, Emmanuelle .
PLOS ONE, 2012, 7 (10)
[10]   On the covariance of two correlated log-odds ratios [J].
Bagos, Pantelis G. .
STATISTICS IN MEDICINE, 2012, 31 (14) :1418-1431