Evaluation of rainfall infiltration characteristics in a volcanic ash soil by time domain reflectometry method

被引:10
|
作者
Hasegawa, Shuichi [1 ]
机构
[1] Natl Inst Agroenvironm Sci, Tsukuba, Ibaraki 305, Japan
关键词
D O I
10.5194/hess-1-303-1997
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Time domain reflectometry (TDR) was used to monitor soil water conditions and to evaluate infiltration characteristics associated with rainfall into a volcanic-ash soil (Hydric Hapludand) with a low bulk density. Four 1 m TDR probes were installed vertically along a 6 m line in a bare field. Three 30 cm and one 60 cm probes were installed between the 1 m probes. Soil water content was measured every half or every hour throughout the year. TDR enabled prediction of the soil water content precisely even though the empirical equation developed by Topp et al. (1980) underestimated the water content. Field capacity, defined as the amount of water stored to a depth of 1 m on the day following heavy rainfall, was 640 mm. There was approximately 100 mm difference in the amount of water stored between field capacity and the driest period. Infiltration characteristics of rainfall were investigated for 36 rainfall events exceeding 10 mm with a total amount of rain of 969 mm out of an annual rainfall of 1192 mm. In the case of 25 low intensity rainfall events with less than 10 mm h(-1) to dry soils, the increase in the amount of water stored to a depth of 1 m was equal to the cumulative rainfall. For rain intensity in excess of 10 mm h(-1), non-uniform infiltration occurred. The increase in the amount of water stored at lower elevation locations was 1.4 to 1.6 times larger than at higher elevation locations even though the difference in ground height among the 1 m probes was 6 cm. In the two instances when rainfall exceeded 100 mm, including the amount of rain in a previous rainfall event, the increase in the amount of water stored to a depth of 1 m was 65 mm lower than the total quantity of rain on the two occasions (220 mm); this indicated that 65 mm of water or 5.5% of the annual rainfall had flowed away either by surface runoff or bypass flow. Hence, approximately 95% of the annual rainfall was absorbed by the soil matrix but it is not possible to simulate soil water movement by Darcy's law over a long period at farm level due to the local differences in rainfall intensity.
引用
收藏
页码:303 / 312
页数:10
相关论文
共 50 条
  • [1] Evaluation of time domain reflectometry (TDR) for estimating furrow infiltration
    Mailapalli, Damodhara R.
    Raghuwanshi, N. S.
    Singh, R.
    Schmitz, G. H.
    Lennartz, F.
    IRRIGATION SCIENCE, 2008, 26 (02) : 161 - 168
  • [2] Evaluation of time domain reflectometry (TDR) for estimating furrow infiltration
    Damodhara R. Mailapalli
    N. S. Raghuwanshi
    R. Singh
    G. H. Schmitz
    F. Lennartz
    Irrigation Science, 2008, 26 : 161 - 168
  • [3] Rainfall Infiltration and Runoff Characteristics of an Unsaturated Volcanic Soil under Grass Cover
    Thanh Binh Nguyen
    Tatsuya, Ishikawa
    Srikrishnan, Siva Subramanian
    PANAM UNSATURATED SOILS 2017: FUNDAMENTALS, 2018, (301): : 135 - 145
  • [4] DETECTING INFILTRATION OF WATER THROUGH SOIL CRACKS BY TIME-DOMAIN REFLECTOMETRY
    TOPP, GC
    DAVIS, JL
    GEODERMA, 1981, 26 (1-2) : 13 - 23
  • [5] Using time domain reflectometry to characterize cattle and pig slurry infiltration into soil
    Misselbrook, TH
    Scholefield, D
    Parkinson, R
    SOIL USE AND MANAGEMENT, 2005, 21 (02) : 167 - 172
  • [6] Evaluation of spatial variation in the soil water content with time domain reflectometry
    Salimgareeva, OA
    Ponizovskii, AA
    Chudinova, SM
    Mironenko, EB
    Ermolaev, AM
    EURASIAN SOIL SCIENCE, 1998, 31 (12) : 1308 - 1313
  • [7] A METHOD OF MEASURING SOIL-MOISTURE BY TIME-DOMAIN REFLECTOMETRY
    LEDIEU, J
    DERIDDER, P
    DECLERCK, P
    DAUTREBANDE, S
    JOURNAL OF HYDROLOGY, 1986, 88 (3-4) : 319 - 328
  • [8] One-Dimensional Transient Analysis of Rainfall Infiltration in Unsaturated Volcanic Ash
    Fern, James
    Eichenberger, John
    Ferrari, Alessio
    Laloui, Lyesse
    RECENT ADVANCES IN MODELING LANDSLIDES AND DEBRIS FLOWS, 2015, : 107 - 118
  • [9] SOIL CHEMICAL CHARACTERISTICS OF RECENT VOLCANIC ASH
    BORNEMISZA, E
    MORALES, JC
    SOIL SCIENCE SOCIETY OF AMERICA PROCEEDINGS, 1969, 33 (04): : 528 - +
  • [10] Horizontally Elongated Time Domain Reflectometry System for Evaluation of Soil Moisture Distribution
    Kim, Dong-Ju
    Yu, Jung-Doung
    Byun, Yong-Hoon
    SENSORS, 2020, 20 (23) : 1 - 17