Some novel numerical techniques for an inverse problem of the multi-term time fractional partial differential equation

被引:19
作者
Fan, W. [1 ]
Liu, F. [2 ]
Jiang, X. [3 ]
Turner, I. [2 ,4 ]
机构
[1] Jiangnan Univ, Sch Sci, Wuxi 214122, Peoples R China
[2] Queensland Univ Technol, Discipline Math Sci, GPO Box 2434, Brisbane, Qld 4001, Australia
[3] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[4] QUT, Australian Res Council Ctr Excellence Math & Stat, Brisbane, Qld, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Inverse problem; Multi-term time fractional partial differential equation; Modified fractional predictor-corrector method; MH-NMSS-PSO algorithm; Experimental data; Numerical method; PARAMETER-ESTIMATION; DIFFUSION EQUATION; BIOLOGICAL-SYSTEMS; DYNAMICAL MODELS; RELAXATION; BOUNDARY; ALGORITHMS; BEHAVIOR; FLUID;
D O I
10.1016/j.cam.2017.12.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, an inverse problem to identify parameters for the multi-term time fractional partial differential equation with Caputo fractional derivative is considered. The numerical solution of the direct problem is obtained by the modified fractional predictor-corrector method, while the inverse problem is conducted by the modified hybrid Nelder-Mead simplex search and particle swarm optimization (MI-I-NMSS-PSO) algorithm, which is expanded to estimate parameters for fractional differential equations. To verify the efficiency and accuracy of the proposed methods, three numerical examples with experimental data are conducted. Furthermore, in order to improve the practical significance of the research on inverse problems, the predictive value of parameter estimation is also testified. This paper provides effective numerical methods for parameter estimation in practical applications involving multi-term time fractional constitutive equations. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:114 / 126
页数:13
相关论文
共 45 条
[1]   Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives [J].
Al-Refai, Mohammed ;
Luchko, Yuri .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :40-51
[2]   Chaos in the fractional order nonlinear Bloch equation with delay [J].
Baleanu, Dumitru ;
Magin, Richard L. ;
Bhalekar, Sachin ;
Daftardar-Gejji, Varsha .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 25 (1-3) :41-49
[3]   The descent of a sphere in a viscous liquid. [J].
Basset, AB .
NATURE, 1910, 83 :521-521
[4]   GENERALIZED FRACTIONAL ORDER BLOCH EQUATION WITH EXTENDED DELAY [J].
Bhalekar, Sachin ;
Daftardar-Gejji, Varsha ;
Baleanu, Dumitru ;
Magin, Richard .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04)
[5]   Finite element multigrid method for multi-term time fractional advection diffusion equations [J].
Bu, Weiping ;
Liu, Xiangtao ;
Tang, Yifa ;
Yang, Jiye .
INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2015, 6 (01)
[6]   Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation [J].
Cheng, Jin ;
Nakagawa, Junichi ;
Yamamoto, Masahiro ;
Yamazaki, Tomohiro .
INVERSE PROBLEMS, 2009, 25 (11)
[7]   Boundary value problems for multi-term fractional differential equations [J].
Daftardar-Gejji, Varsha ;
Bhalekar, Sachin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (02) :754-765
[8]   A new predictor-corrector method for fractional differential equations [J].
Daftardar-Gejji, Varsha ;
Sukale, Yogita ;
Bhalekar, Sachin .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 244 :158-182
[9]   Detailed error analysis for a fractional Adams method [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NUMERICAL ALGORITHMS, 2004, 36 (01) :31-52
[10]   Effects of gamma irradiation on the stress relaxation of drawn ultrahigh molecular weight polyethylene [J].
Djokovic, V ;
Kostoski, D ;
Dramicanin ;
Dudic, D .
RADIATION PHYSICS AND CHEMISTRY, 1999, 55 (5-6) :605-607