A novel measure to identify influential nodes in complex networks based on network global efficiency

被引:4
|
作者
Zhang, Tingping [1 ,2 ]
Fang, Bin [1 ]
Liang, Xinyu [3 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
[2] Chongqing Jiaotong Univ, Coll Informat Sci & Engn, Chongqing 400074, Peoples R China
[3] Chongqing Jiaotong Univ, Sch River & Ocean Engn, Chongqing 400074, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2015年 / 29卷 / 28期
关键词
Complex networks; influential nodes; global efficiency; removing edges; susceptible-infected model; SMALL-WORLD NETWORKS; CENTRALITY;
D O I
10.1142/S0217984915501687
中图分类号
O59 [应用物理学];
学科分类号
摘要
Identifying influential nodes is a basic measure of characterizing the structure and dynamics in complex networks. In this paper, we use network global efficiency by removing edges to propose a new centrality measure for identifying influential nodes in complex networks. Differing from the traditional network global efficiency, the proposed measure is determined by removing edges from networks, not removing nodes. Instead of static structure properties which are exhibited by other traditional centrality measures, such as degree centrality (DC), betweenness centrality (BC) and closeness centrality (CC), we focus on the perspective of dynamical process and global structure in complex networks. Susceptible-infected (SI) model is utilized to evaluate the performance of the proposed method. Experimental results show that the proposed measure is more effective than the other three centrality measures.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A novel method to identify influential nodes in complex networks
    Yang, Yuanzhi
    Yu, Lei
    Wang, Xing
    Chen, Siyi
    Chen, You
    Zhou, Yipeng
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2020, 31 (02):
  • [2] A novel measure of identifying influential nodes in complex networks
    Lv, Zhiwei
    Zhao, Nan
    Xiong, Fei
    Chen, Nan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 523 : 488 - 497
  • [3] A novel voting measure for identifying influential nodes in complex networks based on local structure
    Li, Haoyang
    Wang, Xing
    Chen, You
    Cheng, Siyi
    Lu, Dejiang
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [4] GPN: A novel gravity model based on position and neighborhood to identify influential nodes in complex networks
    Tu, Dengqin
    Xu, Guiqiong
    Meng, Lei
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2021, 35 (17):
  • [5] Evidential method to identify influential nodes in complex networks
    Mo, Hongming
    Gao, Cai
    Deng, Yong
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2015, 26 (02) : 381 - 387
  • [6] Identifying influential nodes in complex networks based on global and local structure
    Sheng, Jinfang
    Dai, Jinying
    Wang, Bin
    Duan, Guihua
    Long, Jun
    Zhang, Junkai
    Guan, Kerong
    Hu, Sheng
    Chen, Long
    Guan, Wanghao
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 541
  • [7] Influential nodes identification in complex networks based on global and local information
    Yang, Yuan-Zhi
    Hu, Min
    Huang, Tai-Yu
    CHINESE PHYSICS B, 2020, 29 (08)
  • [8] Ranking influential nodes in complex networks based on local and global structures
    Qiu, Liqing
    Zhang, Jianyi
    Tian, Xiangbo
    APPLIED INTELLIGENCE, 2021, 51 (07) : 4394 - 4407
  • [9] A novel semi local measure of identifying influential nodes in complex networks
    Wang, Xiaojie
    Slamu, Wushour
    Guo, Wenqiang
    Wang, Sixiu
    Ren, Yan
    CHAOS SOLITONS & FRACTALS, 2022, 158
  • [10] A modified weighted TOPSIS to identify influential nodes in complex networks
    Hu, Jiantao
    Du, Yuxian
    Mo, Hongming
    Wei, Daijun
    Deng, Yong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 444 : 73 - 85