Khovanov homology of torus links

被引:21
作者
Stosic, Marko [1 ,2 ]
机构
[1] Inst Sistemas & Robot, P-1049001 Lisbon, Portugal
[2] Univ Tecn Lisboa, CAMGSD, Inst Super Tecn, P-1049001 Lisbon, Portugal
关键词
Khovanov homology; Torus knots; Hochschild cohomology; COHOMOLOGY; THICKNESS;
D O I
10.1016/j.topol.2008.08.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show that there is a cut-off in the Khovanov homology of (2k, 2kn)-torus links, namely that the maximal homological degree of non-zero homology groups of (2k, 2kn)-torus links is 2k(2)n. Furthermore, we calculate explicitly the homology group in homological degree 2k2n and prove that it coincides with the center of the ring H-k of crossingless matchings, introduced by M. Khovanov in [M. Khovanov, A functor-valued invariant for tangles, Algebr. Geom. Topol. 2 (2002) 665-741, arXiv:math.QA/0103190]. This gives the proof of part of a conjecture by M. Khovanov and L. Rozansky in [M. Khovanov, L. Rozansky. A homology theory for links in S-2 x S-1, in preparation]. Also we give an explicit formula for the ranks of the homology groups of (3, n)-torus knots for every n epsilon N. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:533 / 541
页数:9
相关论文
共 50 条
[21]   Categorified Young symmetrizers and stable homology of torus links II [J].
Michael Abel ;
Matthew Hogancamp .
Selecta Mathematica, 2017, 23 :1739-1801
[22]   Search for Torsion in Khovanov Homology [J].
Mukherjee, Sujoy ;
Przytycki, Jozef H. ;
Silvero, Marithania ;
Wang, Xiao ;
Yang, Seung Yeop .
EXPERIMENTAL MATHEMATICS, 2018, 27 (04) :488-497
[23]   Geometric realization of the almost-extreme Khovanov homology of semiadequate links [J].
Józef H. Przytycki ;
Marithania Silvero .
Geometriae Dedicata, 2020, 204 :387-401
[24]   Geometric realization of the almost-extreme Khovanov homology of semiadequate links [J].
Przytycki, Jozef H. ;
Silvero, Marithania .
GEOMETRIAE DEDICATA, 2020, 204 (01) :387-401
[25]   Unoriented Khovanov Homology [J].
Baldridge, Scott ;
Kauffman, Louis H. ;
McCarty, Ben .
NEW YORK JOURNAL OF MATHEMATICS, 2022, 28 :367-401
[26]   OPEN-CLOSED TQFTS EXTEND KHOVANOV HOMOLOGY FROM LINKS TO TANGLES [J].
Lauda, Aaron D. ;
Pfeiffer, Hendryk .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2009, 18 (01) :87-150
[27]   Evolutionary Khovanov homology [J].
Shen, Li ;
Liu, Jian ;
Wei, Guo-Wei .
AIMS MATHEMATICS, 2024, 9 (09) :26139-26165
[28]   Functoriality of Khovanov homology [J].
Vogel, Pierre .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2020, 29 (04)
[29]   Doubled Khovanov Homology [J].
Rushworth, William .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2018, 70 (05) :1130-1172
[30]   Khovanov homology and the cinquefoil [J].
Baldwin, John A. ;
Hu, Ying ;
Sivek, Steven .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2025, 27 (06) :2443-2465