Advanced Data-Driven Manufacturing

被引:0
作者
Gaudin, Theophile [1 ]
Schilter, Oliver [1 ]
Zipoli, Federico [1 ]
Laino, Teodoro [1 ]
机构
[1] IBM Res Europe, Zurich, Switzerland
来源
ERCIM NEWS | 2020年 / 122期
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In many material manufacturing processes nowadays a large amount of data is created and stored, often without utilizing them to the full potential because of their complexity. Applying state of the art deep learning techniques can be a powerful tool to extract knowledge out of them allowing to get useful insights. In this work we present autoencoder-based machine learning models to find links among composition, properties and processes applied to two prototypical industrial applications.
引用
收藏
页码:45 / 46
页数:2
相关论文
共 2 条
[1]   Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules [J].
Gomez-Bombarelli, Rafael ;
Wei, Jennifer N. ;
Duvenaud, David ;
Hernandez-Lobato, Jose Miguel ;
Sanchez-Lengeling, Benjamin ;
Sheberla, Dennis ;
Aguilera-Iparraguirre, Jorge ;
Hirzel, Timothy D. ;
Adams, Ryan P. ;
Aspuru-Guzik, Alan .
ACS CENTRAL SCIENCE, 2018, 4 (02) :268-276
[2]  
Kingma D. P., ICRL 2014