Evaluation of a convolutional neural network for ovarian tumor differentiation based on magnetic resonance imaging

被引:51
作者
Wang, Robin [1 ]
Cai, Yeyu [2 ]
Lee, Iris K. [1 ,3 ]
Hu, Rong [4 ]
Purkayastha, Subhanik [5 ,6 ]
Pan, Ian [7 ]
Yi, Thomas [7 ]
Tran, Thi My Linh [7 ]
Lu, Shaolei [6 ,8 ]
Liu, Tao [9 ]
Chang, Ken [10 ]
Huang, Raymond Y. [11 ]
Zhang, Paul J. [12 ]
Zhang, Zishu [2 ]
Xiao, Enhua [2 ]
Wu, Jing [2 ]
Bai, Harrison X. [5 ,6 ]
机构
[1] Univ Penn, Perelman Sch Med, Philadelphia, PA 19104 USA
[2] Cent South Univ, Dept Radiol, Second Xiangya Hosp, Changsha, Peoples R China
[3] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
[4] Cent South Univ, Sch Comp Sci & Engn, Changsha, Peoples R China
[5] Brown Univ, Rhode Isl Hosp, Dept Diagnost Imaging, Providence, RI 02903 USA
[6] Brown Univ, Alpert Med Sch, Providence, RI 02912 USA
[7] Brown Univ, Warren Alpert Med Sch, Providence, RI 02912 USA
[8] Brown Univ, Rhode Isl Hosp, Dept Pathol, Providence, RI 02903 USA
[9] Brown Univ, Dept Biostat, Ctr Stat Sci, Sch Publ Hlth, Providence, RI 02912 USA
[10] Massachusetts Gen Hosp, Dept Radiol, Athinoula A Martinos Ctr, Boston, MA USA
[11] Brigham & Womens Hosp, Dept Radiol, 75 Francis St, Boston, MA 02115 USA
[12] Hosp Univ Penn, Dept Pathol & Lab Med, 3400 Spruce St, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
Ovarian neoplasms; Deep learning; Magnetic resonance imaging; EPITHELIAL TUMORS; MR; BENIGN; CANCER; BORDERLINE; MASSES;
D O I
10.1007/s00330-020-07266-x
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives There currently lacks a noninvasive and accurate method to distinguish benign and malignant ovarian lesion prior to treatment. This study developed a deep learning algorithm that distinguishes benign from malignant ovarian lesion by applying a convolutional neural network on routine MR imaging. Methods Five hundred forty-five lesions (379 benign and 166 malignant) from 451 patients from a single institution were divided into training, validation, and testing set in a 7:2:1 ratio. Model performance was compared with four junior and three senior radiologists on the test set. Results Compared with junior radiologists averaged, the final ensemble model combining MR imaging and clinical variables had a higher test accuracy (0.87 vs 0.64,p < 0.001) and specificity (0.92 vs 0.64,p < 0.001) with comparable sensitivity (0.75 vs 0.63,p = 0.407). Against the senior radiologists averaged, the final ensemble model also had a higher test accuracy (0.87 vs 0.74,p = 0.033) and specificity (0.92 vs 0.70,p < 0.001) with comparable sensitivity (0.75 vs 0.83,p = 0.557). Assisted by the model's probabilities, the junior radiologists achieved a higher average test accuracy (0.77 vs 0.64, Delta = 0.13,p < 0.001) and specificity (0.81 vs 0.64, Delta = 0.17,p < 0.001) with unchanged sensitivity (0.69 vs 0.63, Delta = 0.06,p = 0.302). With the AI probabilities, the junior radiologists had higher specificity (0.81 vs 0.70, Delta = 0.11,p = 0.005) but similar accuracy (0.77 vs 0.74, Delta = 0.03,p = 0.409) and sensitivity (0.69 vs 0.83, Delta = -0.146,p = 0.097) when compared with the senior radiologists. Conclusions These results demonstrate that artificial intelligence based on deep learning can assist radiologists in assessing the nature of ovarian lesions and improve their performance.
引用
收藏
页码:4960 / 4971
页数:12
相关论文
共 42 条
[1]   Management of borderline ovarian tumours: a comprehensive review of the literature [J].
Abascal-Saiz, Alejandra ;
Sotillo-Mallo, Laura ;
de Santiago, Javier ;
Zapardiel, Ignacio .
ECANCERMEDICALSCIENCE, 2014, 8
[2]   Approximate is better than "exact" for interval estimation of binomial proportions [J].
Agresti, A ;
Coull, BA .
AMERICAN STATISTICIAN, 1998, 52 (02) :119-126
[3]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[4]   Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement [J].
Chang, Ken ;
Beers, Andrew L. ;
Bai, Harrison X. ;
Brown, James M. ;
Ly, K. Ina ;
Li, Xuejun ;
Senders, Joeky T. ;
Kavouridis, Vasileios K. ;
Boaro, Alessandro ;
Su, Chang ;
Bi, Wenya Linda ;
Rapalino, Otto ;
Liao, Weihua ;
Shen, Qin ;
Zhou, Hao ;
Xiao, Bo ;
Wang, Yinyan ;
Zhang, Paul J. ;
Pinho, Marco C. ;
Wen, Patrick Y. ;
Batchelor, Tracy T. ;
Boxerman, Jerrold L. ;
Arnaout, Omar ;
Rosen, Bruce R. ;
Gerstner, Elizabeth R. ;
Yang, Li ;
Huang, Raymond Y. ;
Kalpathy-Cramer, Jayashree .
NEURO-ONCOLOGY, 2019, 21 (11) :1412-1422
[5]   Residual Convolutional Neural Network for the Determination of IDH Status in Low- and High-Grade Gliomas from MR Imaging [J].
Chang, Ken ;
Bai, Harrison X. ;
Zhou, Hao ;
Su, Chang ;
Bi, Wenya Linda ;
Agbodza, Ena ;
Kavouridis, Vasileios K. ;
Senders, Joeky T. ;
Boaro, Alessandro ;
Beers, Andrew ;
Zhang, Biqi ;
Capellini, Alexandra ;
Liao, Weihua ;
Shen, Qin ;
Li, Xuejun ;
Xiao, Bo ;
Cryan, Jane ;
Ramkissoon, Shakti ;
Ramkissoon, Lori ;
Ligon, Keith ;
Wen, Patrick Y. ;
Bindra, Ranjit S. ;
Woo, John ;
Arnaout, Omar ;
Gerstner, Elizabeth R. ;
Zhang, Paul J. ;
Rosen, Bruce R. ;
Yang, Li ;
Huang, Raymond Y. ;
Kalpathy-Cramer, Jayashree .
CLINICAL CANCER RESEARCH, 2018, 24 (05) :1073-1081
[6]  
CHEN SM, 2019, J IMMUNOTHER CANC S1, V7
[7]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[8]   1977 RIETZ LECTURE - BOOTSTRAP METHODS - ANOTHER LOOK AT THE JACKKNIFE [J].
EFRON, B .
ANNALS OF STATISTICS, 1979, 7 (01) :1-26
[9]   Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI [J].
Hamm, Charlie A. ;
Wang, Clinton J. ;
Savic, Lynn J. ;
Ferrante, Marc ;
Schobert, Isabel ;
Schlachter, Todd ;
Lin, MingDe ;
Duncan, James S. ;
Weinreb, Jeffrey C. ;
Chapiro, Julius ;
Letzen, Brian .
EUROPEAN RADIOLOGY, 2019, 29 (07) :3338-3347
[10]   Complex adnexal masses: Detection and characterization with MR imaging - Multivariate analysis [J].
Hricak, H ;
Chen, M ;
Coakley, FV ;
Kinkel, K ;
Yu, KK ;
Sica, G ;
Bacchetti, P ;
Powell, CB .
RADIOLOGY, 2000, 214 (01) :39-46