Duality of real and quaternionic random matrices

被引:9
作者
Bryc, Wlodzimierz [1 ]
Pierce, Virgil [2 ]
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
[2] UT Pan Amer, Dept Math, Edinburg, TX 78539 USA
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2009年 / 14卷
基金
美国国家科学基金会;
关键词
Gaussian Symplectic Ensemble; quaternion Wishart; moments; Mobius graphs; Euler characteristic; LOCALLY ORIENTABLE SURFACES; MAPS;
D O I
10.1214/EJP.v14-606
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that quaternionic Gaussian random variables satisfy a generalization of the Wick formula for computing the expected value of products in terms of a family of graphical enumeration problems. When applied to the quaternionic Wigner and Wishart families of random matrices the result gives the duality between moments of these families and the corresponding real Wigner and Wishart families.
引用
收藏
页码:452 / 476
页数:25
相关论文
共 28 条