Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nystrom methods

被引:186
|
作者
Blanes, S [1 ]
Moan, PC
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 9EW, England
关键词
differential equations; geometric integrators; partitioned Runge-Kutta; Runge-Kutta-Nystrom; optimised efficiency;
D O I
10.1016/S0377-0427(01)00492-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present new symmetric fourth and sixth-order symplectic partitioned Runge-Kutta and Runge-Kutta-Nyström methods. We studied compositions using several extra stages, optimising the efficiency. An effective error, Ef, is defined and an extensive search is carried out using the extra parameters. The new methods have smaller values of Ef than other methods found in the literature. When applied to several examples they perform up to two orders of magnitude better than previously known method, which is in very good agreement with the values of Ef. © 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:313 / 330
页数:18
相关论文
共 50 条
  • [1] Evolutionary Derivation of Quadratic Symplectic Runge-Kutta-Nystrom Methods
    Tsitouras, Ch.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [2] Functionally fitted Runge-Kutta-Nystrom methods
    Hoang, N. S.
    Sidje, R. B.
    BIT NUMERICAL MATHEMATICS, 2016, 56 (01) : 129 - 150
  • [3] On multisymplecticity of partitioned Runge-Kutta methods
    Ryland, Brett N.
    Mclachlan, Robert I.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (03) : 1318 - 1340
  • [4] Starting algorithms for implicit Runge-Kutta-Nystrom methods
    Laburta, MP
    APPLIED NUMERICAL MATHEMATICS, 1998, 27 (03) : 233 - 251
  • [5] On high order Runge-Kutta-Nystrom pairs
    Simos, T. E.
    Tsitouras, Ch
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 400
  • [6] Economical handling of Runge-Kutta-Nystrom step rejection
    Kovalnogov, V. N.
    Fedorov, R. V.
    Karpukhina, M. T.
    Kornilova, M. I.
    Simos, T. E.
    Tsitouras, Ch.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 438
  • [7] Three sixth-order explicit symplectic Runge-Kutta-Nystrom methods with exact parameters
    Pan, Mengjiao
    Zhang, Jingjing
    Zhang, Shangyou
    RESULTS IN APPLIED MATHEMATICS, 2025, 26
  • [8] FULLY PARALLEL RUNGE-KUTTA-NYSTROM METHODS FOR ODES WITH OSCILLATING SOLUTIONS
    CRISCI, MR
    PATERNOSTER, B
    RUSSO, E
    APPLIED NUMERICAL MATHEMATICS, 1993, 11 (1-3) : 143 - 158
  • [9] General order conditions for stochastic partitioned Runge-Kutta methods
    Anmarkrud, Sverre
    Debrabant, Kristian
    Kvaerno, Anne
    BIT NUMERICAL MATHEMATICS, 2018, 58 (02) : 257 - 280
  • [10] Construction of Symplectic Runge-Kutta Methods for Stochastic Hamiltonian Systems
    Wang, Peng
    Hong, Jialin
    Xu, Dongsheng
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2017, 21 (01) : 237 - 270