POLSAR IMAGE CLASSIFICATION BASED ON THREE-DIMENSIONAL WAVELET TEXTURE FEATURES AND MARKOV RANDOM FIELD

被引:0
作者
Bi, Haixia [1 ]
Xu, Lin [2 ]
Cao, Xiangyong [1 ]
Xu, Zongben [1 ]
机构
[1] Xi An Jiao Tong Univ, Inst Informat & Syst Sci, Xian 710049, Shaanxi, Peoples R China
[2] New York Univ, Dept Elect & Comp Engn, Abu Dhabi 129188, U Arab Emirates
来源
2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2017年
关键词
PolSAR image classification; 3D-DWT; Support Vector Machine (SVM); MRF; ALGORITHM;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The speckle effect embedded in polarimetric synthetic aperture radar (PolSAR) data damages the performance of PolSAR image classification greatly. To alleviate this issue, a new supervised classification method, which introduces spatial consistency in both feature extraction and classification steps is proposed. Specifically, three-dimensional discrete wavelet transform (3D-DWT) is used to extract spectral-spatial texture features, which are proved to be more discriminative than original ones. Afterward, label smoothness prior is incorporated in the classification, which is implemented using a Markov random field (MRF). To demonstrate the validity of the proposed method, real PolSAR image is used in experiments. Compared with the other state-of-the-art methods, this method achieves higher classification accuracy and better visual spatial connectivity.
引用
收藏
页码:3921 / 3924
页数:4
相关论文
共 17 条
[1]  
[Anonymous], 2001, ICCV
[2]   Integration of 3-dimensional discrete wavelet transform and Markov random field for hyperspectral image classification [J].
Cao, Xiangyong ;
Xu, Lin ;
Meng, Deyu ;
Zhao, Qian ;
Xu, Zongben .
NEUROCOMPUTING, 2017, 226 :90-100
[3]   A Three-Component Fisher-Based Feature Weighting Method for Supervised PolSAR Image Classification [J].
Chen, Bo ;
Wang, Shuang ;
Jiao, Licheng ;
Stolkin, Rustam ;
Liu, Hongying .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (04) :731-735
[4]   Deep Learning-Based Classification of Hyperspectral Data [J].
Chen, Yushi ;
Lin, Zhouhan ;
Zhao, Xing ;
Wang, Gang ;
Gu, Yanfeng .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2094-2107
[5]   An Automatic U-Distribution and Markov Random Field Segmentation Algorithm for PolSAR Images [J].
Doulgeris, Anthony P. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (04) :1819-1827
[6]   Texture Classification of PolSAR Data Based on Sparse Coding of Wavelet Polarization Textons [J].
He, Chu ;
Li, Shuang ;
Liao, Zixian ;
Liao, Mingsheng .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (08) :4576-4590
[7]   Classification of Polarimetric SAR Images Using Multilayer Autoencoders and Superpixels [J].
Hou, Biao ;
Kou, Hongda ;
Jiao, Licheng .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (07) :3072-3081
[8]   Unsupervised classification using polarimetric decomposition and the complex Wishart classifier [J].
Lee, JS ;
Grunes, MR ;
Ainsworth, TL ;
Du, LJ ;
Schuler, DL ;
Cloude, SR .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (05) :2249-2258
[9]   Unsupervised terrain classification preserving polarimetric scattering characteristics [J].
Lee, JS ;
Grunes, MR ;
Pottier, E ;
Ferro-Famil, L .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (04) :722-731
[10]  
Lin L.C., TUTORIAL WAVELET TRA