Bidirectional Transport of Amino Acids Regulates mTOR and Autophagy

被引:1416
作者
Nicklin, Paul
Bergman, Philip
Zhang, Bailin [3 ]
Triantafellow, Ellen
Wang, Henry
Nyfeler, Beat
Yang, Haidi
Hild, Marc
Kung, Charles
Wilson, Christopher
Myer, Vic E.
MacKeigan, Jeffrey P.
Porter, Jeffrey A.
Wang, Y. Karen [3 ]
Cantley, Lewis C. [1 ,2 ]
Finan, Peter M.
Murphy, Leon O.
机构
[1] Harvard Univ, Sch Med, Dept Syst Biol, Boston, MA 02115 USA
[2] Beth Israel Deaconess Med Ctr, Div Signal Transduct, Boston, MA 02115 USA
[3] Novartis Inst BioMed Res, Analyt Sci, Cambridge, MA 02139 USA
关键词
P70; S6; KINASE; FUNCTIONAL-CHARACTERIZATION; GLUTAMINE-METABOLISM; GENE-EXPRESSION; RAG GTPASES; CELL-SIZE; SYSTEM L; PROTEIN; RAPAMYCIN; MUSCLE;
D O I
10.1016/j.cell.2008.11.044
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Amino acids are required for activation of the mammalian target of rapamycin ( mTOR) kinase which regulates protein translation, cell growth, and autophagy. Cell surface transporters that allow amino acids to enter the cell and signal to mTOR are unknown. We show that cellular uptake of L-glutamine and its subsequent rapid efflux in the presence of essential amino acids (EAA) is the rate-limiting step that activates mTOR. L-glutamine uptake is regulated by SLC1A5 and loss of SLC1A5 function inhibits cell growth and activates autophagy. The molecular basis for L-glutamine sensitivity is due to SLC7A5/SLC3A2, a bidirectional transporter that regulates the simultaneous efflux of L-glutamine out of cells and transport of L-leucine/EAA into cells. Certain tumor cell lines with high basal cellular levels of L-glutamine bypass the need for L-glutamine uptake and are primed for mTOR activation. Thus, L-glutamine flux regulates mTOR, translation and autophagy to coordinate cell growth and proliferation.
引用
收藏
页码:521 / 534
页数:14
相关论文
共 59 条
  • [31] MTOR interacts with Raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
    Kim, DH
    Sarbassov, DD
    Ali, SM
    King, JE
    Latek, RR
    Erdjument-Bromage, H
    Tempst, P
    Sabatini, DM
    [J]. CELL, 2002, 110 (02) : 163 - 175
  • [32] Regulation of TORC1 by Rag GTPases in nutrient response
    Kim, Eunjung
    Goraksha-Hicks, Pankuri
    Li, Li
    Neufeld, Thomas P.
    Guan, Kun-Liang
    [J]. NATURE CELL BIOLOGY, 2008, 10 (08) : 935 - 945
  • [33] Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3
    Kimura, Shunsuke
    Noda, Takeshi
    Yoshimori, Tamotsu
    [J]. AUTOPHAGY, 2007, 3 (05) : 452 - 460
  • [34] KOVACEVIC Z, 1972, CANCER RES, V32, P326
  • [35] Liu Xiao-ming, 2004, FASEB J, V18, P768
  • [36] minidiscs encodes a putative amino acid transporter subunit required non-autonomously for imaginal cell proliferation
    Martin, JF
    Hersperger, E
    Simcox, A
    Shearn, A
    [J]. MECHANISMS OF DEVELOPMENT, 2000, 92 (02) : 155 - 167
  • [37] Coordinate regulation of translation by the PI 3-kinase and mTOR pathways
    Martin, KA
    Blenis, J
    [J]. ADVANCES IN CANCER RESEARCH, VOL 86, 2002, 86 : 1 - 39
  • [38] Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family
    Mastroberardino, L
    Spindler, B
    Pfeiffer, R
    Skelly, PJ
    Loffing, J
    Shoemaker, CB
    Verrey, F
    [J]. NATURE, 1998, 395 (6699) : 288 - 291
  • [39] SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs
    Max, Xiaoju
    Yoon, Sang-Oh
    Richardson, Celeste J.
    Julich, Kristina
    Blenis, John
    [J]. CELL, 2008, 133 (02) : 303 - 313
  • [40] The transport of glutamine into mammalian cells
    McGivan, John D.
    Bungard, Claire I.
    [J]. FRONTIERS IN BIOSCIENCE, 2007, 12 : 874 - 882