On nonexistence and nonuniqueness of solutions of the Cauchy problem for a semilinear parabolic equation

被引:18
作者
Ben-Artzi, M [1 ]
Souplet, P
Weissler, FB
机构
[1] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
[2] Univ Picardie, Dept Math, INSSET, F-02109 St Quentin en Yvelines, France
[3] Univ Versailles, CNRS, UMR 7641, LMA, F-78302 Versailles, France
[4] Univ Paris 13, Inst Galilee, CNRS, UMR 7539,Lab Analyse Geometrie & Applicat, F-93430 Villetaneuse, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1999年 / 329卷 / 05期
关键词
D O I
10.1016/S0764-4442(00)88608-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the local Cauchy problem for the semilinear parabolic equation u(t) - Delta u = a /del u/(p), t > 0, x is an element of R-N, with p greater than or equal to 1, a not equal 0, and initial data in L-q(R-N), 1 less than or equal to q < infinity. After showing local nonexistence when p greater than or equal to 2, we establish the existence of a critical exponent q(c) = N(p - 1)/(2 - p) for p < 2, such that the problem is well posed in L-q if q greater than or equal to q(c), and ill posed, due to nonuniqueness, if 1 less than or equal to q < q(c) (implying, in particular, p > (N + 2)/(N + 1)). To prove nonuniqueness, for a > 0, we construct a self-similar, positive, regular solution u, such: that lim(t down arrow 0) //u(t)//(Lq) = 0. (C) 1999 Academie des Sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:371 / 376
页数:6
相关论文
共 14 条
[1]  
Alaa, 1996, ANN MATH BLAISE PASC, V3, P1, DOI [10.5802/ambp.64, DOI 10.5802/ambp.64]
[2]   Global existence and decay for viscous Hamilton-Jacobi equations [J].
Amour, L ;
Ben-Artzi, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 31 (5-6) :621-628
[3]   Decay of mass for a semilinear parabolic equation [J].
Ben-Artzi, M ;
Koch, H .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (5-6) :869-881
[4]   Asymptotic estimates of solutions of u(t)-1/2 Delta u=-vertical bar del u vertical bar in R(+)xR(r)(d) d>=2 [J].
Benachour, S ;
Roynette, B ;
Vallois, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 144 (02) :301-324
[5]  
BENACHOUR S, GLOBAL SOLUTIONS VIS
[6]  
BENARTZI B, IN PRESS T AM MATH S
[7]   GLOBAL EXISTENCE AND DECAY FOR A NONLINEAR PARABOLIC EQUATION [J].
BENARTZI, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 19 (08) :763-768
[8]  
BREZIS H, 1986, ARCH RATION MECH AN, V95, P185, DOI 10.1007/BF00251357
[9]   GLOBAL-SOLUTIONS OF 2-DIMENSIONAL NAVIER-STOKES AND EULER EQUATIONS - REMARKS [J].
BREZIS, H .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 128 (04) :359-360
[10]   A nonlinear heat equation with singular initial data [J].
Brezis, H ;
Cazenave, T .
JOURNAL D ANALYSE MATHEMATIQUE, 1996, 68 :277-304