Cellular automata between sofic tree shifts

被引:9
作者
Ceccherini-Silberstein, Tullio [1 ]
Coornaert, Michel [2 ,3 ]
Fiorenzi, Francesca [4 ]
Sunic, Zoran [5 ]
机构
[1] Univ Sannio, Dipartimento Ingn, I-82100 Benevento, Italy
[2] Univ Strasbourg, UMR 7501, Inst Rech Math Avancee, F-67000 Strasbourg, France
[3] CNRS, F-67000 Strasbourg, France
[4] Univ Paris 11, Rech Informat Lab, F-91405 Orsay, France
[5] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
Free monoid; Regular rooted tree; Tree shift; Subshift; Shift of finite type; Sofic shift; Unrestricted Rabin automaton; Cellular automaton; Surjectivity problem; Injectivity problem; PERIODIC CONFIGURATIONS; REVERSIBILITY; ENDS;
D O I
10.1016/j.tcs.2013.07.007
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the sofic tree shifts of A(Sigma)*, where Sigma* is a regular rooted tree of finite rank. In particular, we give their characterization in terms of unrestricted Rabin automata. We show that if X subset of A(Sigma)* is a sofic tree shift, then the configurations in X whose orbit under the shift action is finite are dense in X, and, as a consequence of this, we deduce that every injective cellular automata tau : X -> X is surjective. Moreover, a characterization of sofic tree shifts in terms of general Rabin automata is given. We present an algorithm for establishing whether two unrestricted Rabin automata accept the same sofic tree shift or not. This allows us to prove the decidability of the surjectivity problem for cellular automata between sofic tree shifts. We also prove the decidability of the injectivity problem for cellular automata defined on a tree shift of finite type. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:79 / 101
页数:23
相关论文
共 34 条
  • [1] Amoroso S., 1972, Journal of Computer and System Sciences, V6, P448, DOI 10.1016/S0022-0000(72)80013-8
  • [2] [Anonymous], 2010, CELLULAR AUTOMATA GR
  • [3] Aubrun N., 2011, THESIS U PARIS EST
  • [4] Sofic Tree-Shifts
    Aubrun, Nathalie
    Beal, Marie-Pierre
    [J]. THEORY OF COMPUTING SYSTEMS, 2013, 53 (04) : 621 - 644
  • [5] Aubrun N, 2010, LECT NOTES COMPUT SC, V6072, P12, DOI 10.1007/978-3-642-13182-0_2
  • [6] ELEMENTARY THEORY OF FINITE FIELDS
    AX, J
    [J]. ANNALS OF MATHEMATICS, 1968, 88 (02) : 239 - &
  • [7] Ceccherini-Silberstein Tullio, 2012, Implementation and Application of Automata. Proceedings of the 17th International Conference (CIAA 2012), P101, DOI 10.1007/978-3-642-31606-7_9
  • [8] Ceccherini-Silberstein T., 2013, SPRINGER INDAM SERIE, V3
  • [9] Amenable groups and cellular automata
    Ceccherini-Silberstein, TG
    Machì, A
    Scarabotti, F
    [J]. ANNALES DE L INSTITUT FOURIER, 1999, 49 (02) : 673 - +
  • [10] On the density of periodic configurations in strongly irreducible subshifts
    Ceccherini-Silberstein, Tullio
    Coornaert, Michel
    [J]. NONLINEARITY, 2012, 25 (07) : 2119 - 2131