Rhizosphere colonization and control of Meloidogyne spp. by nematode-trapping fungi

被引:0
|
作者
Persson, C [1 ]
Jansson, HB [1 ]
机构
[1] Univ Lund, Dept Microbial Ecol, S-22362 Lund, Sweden
关键词
Arthrobotrys dactyloides; Arthrobotrys superba; biological control; Meloidogyne incognita; Meloidogyne [!text type='java']java[!/text]nica; Monacrosporium ellipsosporum; Monacrosporium geophyropagum; nematode; nematode-trapping fungi; rhizosphere; root-knot nematodes; tomato;
D O I
暂无
中图分类号
Q95 [动物学];
学科分类号
071002 ;
摘要
The ability of nematode-trapping fungi to colonize the rhizosphere of crop plants has been suggested to be an important factor in biological control of root-infecting nematodes. In this study, rhizosphere colonization was evaluated for 38 isolates of nematode-trapping fungi representing 11 species. In an initial screen, Arthrobotrys dactyloides, A. superba, and Monacrosporium ellipsosporum were most frequently detected in the tomato rhizosphere. In subsequent pot experiments these fungi and the non-root colonizing M. geophyropagum were introduced to soil in a sodium alginate matrix, and further tested both for establishment in the tomato rhizosphere and suppression of root-knot nematodes. The knob-forming M. ellipsosporum showed a high capacity to colonize the rhizosphere both in the initial screen and the pot experiments, with more than twice as many fungal propagules in the rhizosphere as in the root-free soil. However, neither this fungus nor the other nematode-trapping fungi tested reduced nematode damage to tomato plants.
引用
收藏
页码:164 / 171
页数:8
相关论文
共 50 条
  • [31] Heavy metal tolerance of nematode-trapping fungi in lead-polluted soils
    Mo, MH
    Chen, WM
    Su, HY
    Zhang, KQ
    Duan, CQ
    He, DM
    APPLIED SOIL ECOLOGY, 2006, 31 (1-2) : 11 - 19
  • [32] Diversity and metal tolerance of nematode-trapping fungi in Pb-polluted soils
    Mo, Ming-He
    Chen, Wei-Min
    Yang, Hao-Ran
    Zhang, Ke-Qin
    JOURNAL OF MICROBIOLOGY, 2008, 46 (01) : 16 - 22
  • [33] Nematode-trapping fungi in conventionally and organically managed corn-tomato rotations
    Timm, L
    Pearson, D
    Jaffee, B
    MYCOLOGIA, 2001, 93 (01) : 25 - 29
  • [34] Interspecific and host-related gene expression patterns in nematode-trapping fungi
    Karl-Magnus Andersson
    Dharmendra Kumar
    Johan Bentzer
    Eva Friman
    Dag Ahrén
    Anders Tunlid
    BMC Genomics, 15
  • [35] Impact of the Nematode-trapping Fungus, Dactylaria brochopaga as a Biocontrol Agent against Meloidogyne incognita Infesting Superior Grapevine
    Aboul-Eid, H. Z.
    Noweer, E. M. A.
    Ashour, N. E.
    EGYPTIAN JOURNAL OF BIOLOGICAL PEST CONTROL, 2014, 24 (02) : 477 - 482
  • [36] Diversity and metal tolerance of nematode-trapping fungi in Pb-polluted soils
    Ming-He Mo
    Wei-Min Chen
    Hao-Ran Yang
    Ke-Qin Zhang
    The Journal of Microbiology, 2008, 46
  • [37] Efficiency of the fungi isolated from the tomato rhizosphere to control the north root-knot nematode Meloidogyne hapla Chitwood 1949
    Nekoval, Svetlana N.
    Chernyakovich, Maxim N.
    Churikova, Arina K.
    Maskalenko, Oksana A.
    Muravyov, Vyacheslav S.
    EGYPTIAN JOURNAL OF BIOLOGICAL PEST CONTROL, 2024, 34 (01)
  • [38] Trap Induction and Trapping in Eight Nematode-trapping Fungi (Orbiliaceae) as Affected by Juvenile Stage of Caenorhabditis elegans
    Hongyan Xie
    F. M. Aminuzzaman
    Lingling Xu
    Yiling Lai
    Feng Li
    Xingzhong Liu
    Mycopathologia, 2010, 169 : 467 - 473
  • [39] Nematode-Trapping Fungi Produce Diverse Metabolites during Predator-Prey Interaction
    Kuo, Ting-Hao
    Yang, Ching-Ting
    Chang, Hsin-Yuan
    Hsueh, Yen-Ping
    Hsu, Cheng-Chih
    METABOLITES, 2020, 10 (03)
  • [40] Genetic factors involved in rhizosphere colonization by phytobeneficial Pseudomonas spp.
    Zboralski, Antoine
    Filion, Martin
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 : 3539 - 3554