Advanced quantum techniques for future gravitational-wave detectors

被引:46
作者
Danilishin, Stefan L. [1 ,2 ]
Khalili, Farid Ya. [3 ,4 ]
Miao, Haixing [5 ,6 ]
机构
[1] Leibniz Univ Hannover, Inst Theoret Phys, Callinstr 38, D-30167 Hannover, Germany
[2] Albert Einstein Inst, Max Planck Inst Gravitat Phys, Callinstr 38, D-30167 Hannover, Germany
[3] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia
[4] Russian Quantum Ctr, Skolkovo 143025, Russia
[5] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England
[6] Univ Birmingham, Inst Gravitat Wave Astron, Birmingham B15 2TT, W Midlands, England
基金
俄罗斯基础研究基金会;
关键词
Gravitational-wave detectors; Optomechanics; Quantum measurement theory; Quantum noise; Standard quantum limit; Fundamental quantum limit; Optical rigidity; Quantum speed meter; Squeezed light; Back-action evasion; Atomic spin ensemble; White-light cavity; POLARIZATION SAGNAC INTERFEROMETER; NOISE; MOTION; LIGHT; ENTANGLEMENT; OSCILLATOR; FORMALISM; RIGIDITY; OPTICS; STATES;
D O I
10.1007/s41114-019-0018-y
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Quantum fluctuation of light limits the sensitivity of advanced laser interferometric gravitational-wave detectors. It is one of the principal obstacles on the way towards the next-generation gravitational-wave observatories. The envisioned significant improvement of the detector sensitivity requires using quantum non-demolition measurement and back-action evasion techniques, which allow us to circumvent the sensitivity limit imposed by the Heisenberg uncertainty principle. In our previous review article (Danilishin and Khalili in Living Rev Relativ 15:5, 2012), we laid down the basic principles of quantum measurement theory and provided the framework for analysing the quantum noise of interferometers. The scope of this paper is to review novel techniques for quantum noise suppression proposed in the recent years and put them in the same framework. Our delineation of interferometry schemes and topologies is intended as an aid in the process of selecting the design for the next-generation gravitational-wave observatories.
引用
收藏
页数:89
相关论文
共 126 条
[51]   IRREVERSIBILITY AND GENERALIZED NOISE [J].
CALLEN, HB ;
WELTON, TA .
PHYSICAL REVIEW, 1951, 83 (01) :34-40
[52]   Bloch-Messiah reduction of Gaussian unitaries by Takagi factorization [J].
Cariolaro, Gianfranco ;
Pierobon, Gianfranco .
PHYSICAL REVIEW A, 2016, 94 (06)
[53]   NEW FORMALISM FOR 2-PHOTON QUANTUM OPTICS .1. QUADRATURE PHASES AND SQUEEZED STATES [J].
CAVES, CM ;
SCHUMAKER, BL .
PHYSICAL REVIEW A, 1985, 31 (05) :3068-3092
[54]   QUANTUM LIMITS ON NOISE IN LINEAR-AMPLIFIERS [J].
CAVES, CM .
PHYSICAL REVIEW D, 1982, 26 (08) :1817-1839
[55]   QUANTUM-MECHANICAL NOISE IN AN INTERFEROMETER [J].
CAVES, CM .
PHYSICAL REVIEW D, 1981, 23 (08) :1693-1708
[56]   Laser cooling of a nanomechanical oscillator into its quantum ground state [J].
Chan, Jasper ;
Mayer Alegre, T. P. ;
Safavi-Naeini, Amir H. ;
Hill, Jeff T. ;
Krause, Alex ;
Groeblacher, Simon ;
Aspelmeyer, Markus ;
Painter, Oskar .
NATURE, 2011, 478 (7367) :89-92
[57]   Macroscopic quantum mechanics: theory and experimental concepts of optomechanics [J].
Chen, Yanbei .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2013, 46 (10)
[58]   QND measurements for future gravitational-wave detectors [J].
Chen, Yanbei ;
Danilishin, Stefan L. ;
Khalili, Farid Ya. ;
Mueller-Ebhardt, Helge .
GENERAL RELATIVITY AND GRAVITATION, 2011, 43 (02) :671-694
[59]  
Cole GD, 2013, NAT PHOTONICS, V7, P644, DOI [10.1038/NPHOTON.2013.174, 10.1038/nphoton.2013.174]
[60]   Squeezed-state source using radiation-pressure-induced rigidity [J].
Corbitt, T ;
Chen, YB ;
Khalili, F ;
Ottaway, D ;
Vyatchanin, S ;
Whitcomb, S ;
Mavalvala, N .
PHYSICAL REVIEW A, 2006, 73 (02)