A physiological role for the supramolecular organization of rhodopsin and transducin in rod photoreceptors

被引:22
作者
Dell'Orco, Daniele [1 ,2 ]
机构
[1] Univ Verona, Sect Biol Chem, Dept Life Sci & Reprod, I-37134 Verona, Italy
[2] Univ Verona, Ctr Biomed Comp, I-37134 Verona, Italy
关键词
Phototransduction; Transducin; Rhodopsin; Systems biology; Precoupling; Rod cell; SURFACE-PLASMON RESONANCE; PROTEIN-COUPLED RECEPTOR; LATERAL DIFFUSION; PHOTOTRANSDUCTION CASCADE; PHOTOACTIVATED RHODOPSIN; VISUAL PIGMENT; LIPID-BILAYER; MEMBRANE; TEMPERATURE; ACTIVATION;
D O I
10.1016/j.febslet.2013.05.017
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Vertebrate vision in rod photoreceptors begins when a photon hits the visual pigment rhodopsin (Rh) and triggers the phototransduction cascade. Although the fine biochemical and biophysical details of this paradigmatic signalling pathway have been studied for decades, phototransduction still presents unclear mechanistic aspects. Increasing lines of evidence suggest that the visual pigment rhodopsin (Rh) is natively organized in dimers on the surface of disc membranes, and may form higher order "paracrystalline" assemblies, which are not easy to reconcile with the classical collision-coupling mechanistic scenario evoked to explain the extremely fast molecular processes required in phototransduction. The questioned and criticized existence of paracrystalline Rh rafts can be fully accepted only if it can be explained in functional terms by a solid mechanistic picture. Here we discuss how recent data suggest a physiological role for supramolecular assemblies of Rh and its cognate G protein transducin (G(t)), which by forming transient complexes in the dark may ensure rapid activation of the cascade even in a crowded environment that, according to the classical picture, would otherwise stop the cascade. (c) 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:2060 / 2066
页数:7
相关论文
共 61 条
[31]   Surface plasmon resonance study of G protein/receptor coupling in a lipid bilayer-free system [J].
Komolov, KE ;
Senin, II ;
Philippov, PP ;
Koch, KW .
ANALYTICAL CHEMISTRY, 2006, 78 (04) :1228-1234
[32]   On-chip photoactivation of heterologously expressed rhodopsin allows kinetic analysis of G-protein signaling by surface plasmon resonance spectroscopy [J].
Komolov, Konstantin E. ;
Aguila, Monica ;
Toledo, Darwin ;
Manyosa, Joan ;
Garriga, Pere ;
Koch, Karl-Wilhelm .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2010, 397 (07) :2967-2976
[33]  
Komolov KE, 2010, METHODS MOL BIOL, V627, P249, DOI 10.1007/978-1-60761-670-2_17
[34]   RGS expression rate-limits recovery of rod photoresponses [J].
Krispel, Claudia M. ;
Chen, Desheng ;
Melling, Nathan ;
Chen, Yu-Jiun ;
Martemyanov, Kirill A. ;
Quillinan, Nidia ;
Arshavsky, Vadim Y. ;
Wensel, Theodore G. ;
Chen, Ching-Kang ;
Burns, Marie E. .
NEURON, 2006, 51 (04) :409-416
[35]   EFFECTS OF TEMPERATURE-CHANGES ON TOAD ROD PHOTOCURRENTS [J].
LAMB, TD .
JOURNAL OF PHYSIOLOGY-LONDON, 1984, 346 (JAN) :557-578
[36]   Phototransduction, dark adaptation, and rhodopsin regeneration - The Proctor Lecture [J].
Lamb, Trevor D. ;
Pugh, Edward N., Jr. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2006, 47 (12) :5138-5152
[37]   The gain of rod phototransduction: Reconciliation of biochemical and electrophysiological measurements [J].
Leskov, IB ;
Klenchin, VA ;
Handy, JW ;
Whitlock, GG ;
Govardovskii, VI ;
Bownds, MD ;
Lamb, TD ;
Pugh, EN ;
Arshavsky, VY .
NEURON, 2000, 27 (03) :525-537
[38]   Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes [J].
Liang, Y ;
Fotiadis, D ;
Filipek, S ;
Saperstein, DA ;
Palczewski, K ;
Engel, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (24) :21655-21662
[39]  
LIEBMAN PA, 1982, METHOD ENZYMOL, V81, P660
[40]   LATERAL DIFFUSION OF VISUAL PIGMENT IN PHOTORECEPTOR DISK MEMBRANES [J].
LIEBMAN, PA ;
ENTINE, G .
SCIENCE, 1974, 185 (4149) :457-459