Large bandgap of pressurized trilayer graphene

被引:74
作者
Ke, Feng [1 ]
Chen, Yabin [2 ]
Yin, Ketao [3 ]
Yan, Jiejuan [1 ,4 ]
Zhang, Hengzhong [1 ]
Liu, Zhenxian [5 ]
Tse, John S. [3 ]
Wu, Junqiao [2 ]
Mao, Ho-Kwang [1 ]
Chen, Bin [1 ]
机构
[1] Ctr High Pressure Sci & Technol Adv Res, Shanghai 201203, Peoples R China
[2] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[3] Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada
[4] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[5] George Washington Univ, Inst Mat Sci, Dept Civil & Environm Engn, Washington, DC 20052 USA
关键词
graphene; two-dimensional materials; high pressure; electrical transport; bandgap opening; X-RAY-DIFFRACTION; ELECTRONIC-STRUCTURE; DIRAC FERMIONS; BERRYS PHASE; GRAPHITE; TRANSITION; STRAIN; GAP;
D O I
10.1073/pnas.1820890116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Graphene-based nanodevices have been developed rapidly and are now considered a strong contender for postsilicon electronics. However, one challenge facing graphene-based transistors is opening a sizable bandgap in graphene. The largest bandgap achieved so far is several hundred meV in bilayer graphene, but this value is still far below the threshold for practical applications. Through in situ electrical measurements, we observed a semiconducting character in compressed trilayer graphene by tuning the interlayer interaction with pressure. The optical absorption measurements demonstrate that an intrinsic bandgap of 2.5 +/- 0.3 eV could be achieved in such a semiconducting state, and once opened could be preserved to a few GPa. The realization of wide bandgap in compressed trilayer graphene offers opportunities in carbon-based electronic devices.
引用
收藏
页码:9186 / 9190
页数:5
相关论文
共 56 条
[31]   Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy [J].
Ohta, Taisuke ;
Bostwick, Aaron ;
McChesney, J. L. ;
Seyller, Thomas ;
Horn, Karsten ;
Rotenberg, Eli .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)
[32]   Controlling the electronic structure of bilayer graphene [J].
Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, United States ;
不详 ;
不详 .
Science, 2006, 5789 (951-954) :951-954
[33]   Gate-induced insulating state in bilayer graphene devices [J].
Oostinga, Jeroen B. ;
Heersche, Hubert B. ;
Liu, Xinglan ;
Morpurgo, Alberto F. ;
Vandersypen, Lieven M. K. .
NATURE MATERIALS, 2008, 7 (02) :151-157
[34]   Electronic Properties of Bilayer Graphene Strongly Coupled to Interlayer Stacking and an External Electric Field [J].
Park, Changwon ;
Ryou, Junga ;
Hong, Suklyun ;
Sumpter, Bobby G. ;
Kim, Gunn ;
Yoon, Mina .
PHYSICAL REVIEW LETTERS, 2015, 115 (01)
[35]   X-ray diffraction and nanoindentation studies of nanocrystalline graphite at high pressures [J].
Patterson, JR ;
Kudryavtsev, A ;
Vohra, YK .
APPLIED PHYSICS LETTERS, 2002, 81 (11) :2073-2075
[36]   Raman evidence for pressure-induced formation of diamondene [J].
Pimenta Martins, Luiz Gustavo ;
Matos, Matheus J. S. ;
Paschoal, Alexandre R. ;
Freire, Paulo T. C. ;
Andrade, Nadia F. ;
Aguiar, Acrisio L. ;
Kong, Jing ;
Neves, Bernardo R. A. ;
de Oliveira, Alan B. ;
Mazzoni, Mario S. C. ;
Souza Filho, Antonio G. ;
Cancado, Luiz Gustavo .
NATURE COMMUNICATIONS, 2017, 8
[37]   Chaotic dirac billiard in graphene quantum dots [J].
Ponomarenko, L. A. ;
Schedin, F. ;
Katsnelson, M. I. ;
Yang, R. ;
Hill, E. W. ;
Novoselov, K. S. ;
Geim, A. K. .
SCIENCE, 2008, 320 (5874) :356-358
[38]  
Ponomarenko LA, 2011, NAT PHYS, V7, P958, DOI [10.1038/NPHYS2114, 10.1038/nphys2114]
[39]   Tunable Band Gaps in Bilayer Graphene-BN Heterostructures [J].
Ramasubramaniam, Ashwin ;
Naveh, Doron ;
Towe, Elias .
NANO LETTERS, 2011, 11 (03) :1070-1075
[40]  
Schwierz F, 2010, NAT NANOTECHNOL, V5, P487, DOI [10.1038/nnano.2010.89, 10.1038/NNANO.2010.89]