Large bandgap of pressurized trilayer graphene

被引:74
作者
Ke, Feng [1 ]
Chen, Yabin [2 ]
Yin, Ketao [3 ]
Yan, Jiejuan [1 ,4 ]
Zhang, Hengzhong [1 ]
Liu, Zhenxian [5 ]
Tse, John S. [3 ]
Wu, Junqiao [2 ]
Mao, Ho-Kwang [1 ]
Chen, Bin [1 ]
机构
[1] Ctr High Pressure Sci & Technol Adv Res, Shanghai 201203, Peoples R China
[2] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[3] Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada
[4] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[5] George Washington Univ, Inst Mat Sci, Dept Civil & Environm Engn, Washington, DC 20052 USA
关键词
graphene; two-dimensional materials; high pressure; electrical transport; bandgap opening; X-RAY-DIFFRACTION; ELECTRONIC-STRUCTURE; DIRAC FERMIONS; BERRYS PHASE; GRAPHITE; TRANSITION; STRAIN; GAP;
D O I
10.1073/pnas.1820890116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Graphene-based nanodevices have been developed rapidly and are now considered a strong contender for postsilicon electronics. However, one challenge facing graphene-based transistors is opening a sizable bandgap in graphene. The largest bandgap achieved so far is several hundred meV in bilayer graphene, but this value is still far below the threshold for practical applications. Through in situ electrical measurements, we observed a semiconducting character in compressed trilayer graphene by tuning the interlayer interaction with pressure. The optical absorption measurements demonstrate that an intrinsic bandgap of 2.5 +/- 0.3 eV could be achieved in such a semiconducting state, and once opened could be preserved to a few GPa. The realization of wide bandgap in compressed trilayer graphene offers opportunities in carbon-based electronic devices.
引用
收藏
页码:9186 / 9190
页数:5
相关论文
共 56 条
[1]   Crystal Structure of Cold Compressed Graphite [J].
Amsler, Maximilian ;
Flores-Livas, Jose A. ;
Lehtovaara, Lauri ;
Balima, Felix ;
Ghasemi, S. Alireza ;
Machon, Denis ;
Pailhes, Stephane ;
Willand, Alexander ;
Caliste, Damien ;
Botti, Silvana ;
San Miguel, Alfonso ;
Goedecker, Stefan ;
Marques, Miguel A. L. .
PHYSICAL REVIEW LETTERS, 2012, 108 (06)
[2]  
Bai JW, 2010, NAT NANOTECHNOL, V5, P190, DOI [10.1038/nnano.2010.8, 10.1038/NNANO.2010.8]
[3]   Superlattice-Induced Insulating States and Valley-Protected Orbits in Twisted Bilayer Graphene [J].
Cao, Y. ;
Luo, J. Y. ;
Fatemi, V. ;
Fang, S. ;
Sanchez-Yamagishi, J. D. ;
Watanabe, K. ;
Taniguchi, T. ;
Kaxiras, E. ;
Jarillo-Herrero, P. .
PHYSICAL REVIEW LETTERS, 2016, 117 (11)
[4]   Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect [J].
Castro, Eduardo V. ;
Novoselov, K. S. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Dos Santos, J. M. B. Lopes ;
Nilsson, Johan ;
Guinea, F. ;
Geim, A. K. ;
Castro Neto, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 99 (21)
[5]   Ultrahard carbon film from epitaxial two-layer graphene [J].
Gao, Yang ;
Cao, Tengfei ;
Cellini, Filippo ;
Berger, Claire ;
de Heer, Walter A. ;
Tosatti, Erio ;
Riedo, Elisa ;
Bongiorno, Angelo .
NATURE NANOTECHNOLOGY, 2018, 13 (02) :133-+
[6]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[7]   Tuning field-induced energy gap of bilayer graphene via interlayer spacing [J].
Guo, Yufeng ;
Guo, Wanlin ;
Chen, Changfeng .
APPLIED PHYSICS LETTERS, 2008, 92 (24)
[8]   Energy band-gap engineering of graphene nanoribbons [J].
Han, Melinda Y. ;
Oezyilmaz, Barbaros ;
Zhang, Yuanbo ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)
[9]   Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene (vol 11, 426, 2016) [J].
Hao, Yufeng ;
Wang, Lei ;
Liu, Yuanyue ;
Chen, Hua ;
Wang, Xiaohan ;
Tan, Cheng ;
Nie, Shu ;
Suk, Ji Won ;
Jiang, Tengfei ;
Liang, Tengfei ;
Xiao, Junfeng ;
Ye, Wenjing ;
Dean, Cory R. ;
Yakobson, Boris I. ;
McCarty, Kevin F. ;
Kim, Philip ;
Hone, James ;
Colombo, Luigi ;
Ruoff, Rodney S. .
NATURE NANOTECHNOLOGY, 2016, 11 (05) :426-431
[10]   New superhard carbon phases between graphite and diamond [J].
He, Chaoyu ;
Sun, Lizhong ;
Zhang, Chunxiao ;
Peng, Xiangyang ;
Zhang, Kaiwang ;
Zhong, Jianxin .
SOLID STATE COMMUNICATIONS, 2012, 152 (16) :1560-1563