A new a posteriori error estimate for the Morley element

被引:43
作者
Hu, Jun [1 ,2 ]
Shi, Zhongci [3 ]
机构
[1] Peking Univ, LMAM, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[3] Chinese Acad Sci, Inst Computat Math, Beijing 100080, Peoples R China
关键词
NONCONFORMING ELEMENTS; CONVERGENCE PROPERTIES; STATIONARY STOKES; FINITE-ELEMENTS; UNIFYING THEORY;
D O I
10.1007/s00211-008-0205-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a posteriori error analysis for the nonconforming Morley element of the fourth order elliptic equation. We propose a new residual-based a posteriori error estimator and prove its reliability and efficiency. These results refine those of Beirao da Veiga et al. (Numer Math 106:165-179, 2007) by dropping two edge jump terms in both the energy norm of the error and the estimator, and those of Wang and Zhang (Local a priori and a posteriori error estimates of finite elements for biharmonic equation, Research Report, 13, 2006) by showing the efficiency in the sense of Verfurth (A review of a posteriori error estimation and adaptive mesh-refinement techniques, Wiley-Teubner, New York, 1996). Moreover, the normal component in the estimators of Beirao da Veiga et al. (Numer Math 106:165-179, 2007) and Wang and Zhang (Local a priori and a posteriori error estimates of finite elements for biharmonic equation, Research Report, 13, 2006) is dropped, and therefore only the tangential component of the stress on each edge comes into the estimator. In addition, we generalize these results to three dimensional case.
引用
收藏
页码:25 / 40
页数:16
相关论文
共 45 条
[1]  
[Anonymous], 2002, East-West J. Numer. Math
[2]  
BAKER GA, 1977, MATH COMPUT, V31, P45, DOI 10.1090/S0025-5718-1977-0431742-5
[3]  
Bazeley G. P., 1965, P C MATR METH STRUCT, V7, P547
[4]   A local regularization operator for triangular and quadrilateral finite elements [J].
Bernardi, C ;
Girault, V .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (05) :1893-1916
[5]   A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations [J].
Cai, ZQ ;
Douglas, J ;
Ye, X .
CALCOLO, 1999, 36 (04) :215-232
[6]   A unifying theory of a posteriori error control for nonconforming finite element methods [J].
Carstensen, C. ;
Hu, Jun .
NUMERISCHE MATHEMATIK, 2007, 107 (03) :473-502
[7]   A unifying theory of a posteriori finite element error control [J].
Carstensen, C .
NUMERISCHE MATHEMATIK, 2005, 100 (04) :617-637
[8]   Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM [J].
Carstensen, C ;
Bartels, S .
MATHEMATICS OF COMPUTATION, 2002, 71 (239) :945-969
[9]   A posteriori error estimates for nonconforming finite element methods [J].
Carstensen, C ;
Bartels, S ;
Jansche, S .
NUMERISCHE MATHEMATIK, 2002, 92 (02) :233-256
[10]  
Carstensen C, 1999, RAIRO-MATH MODEL NUM, V33, P1187