Solving the time-dependent Schrodinger equation using finite difference methods

被引:0
|
作者
Becerril, R. [1 ]
Guzman, F. S. [1 ]
Rendon-Romero, A. [2 ]
Valdez-Alvarado, S. [1 ]
机构
[1] Univ Michoacana, Inst Fis & Matemat, Morelia 58040, Michoacan, Mexico
[2] Univ Michoacana, Fac Ciencias Fisicomatemat, Morelia 58040, Michoacan, Mexico
来源
REVISTA MEXICANA DE FISICA E | 2008年 / 54卷 / 02期
关键词
Finite difference methods; computational techniques; Schroedinger equation;
D O I
暂无
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
We solve the time-dependent Schrodinger equation in one and two dimensions using the finite difference approximation. The evolution is carried out using the method of lines. The illustrative cases include: the particle in a box and the harmonic oscillator in one and two dimensions. As non-standard examples we evolve two solitons and show the time-dependent solitonic behavior in one dimension and the stabilization of an atomic gas model in two dimensions. The codes used to generate the results in this manuscript are freely available under request, and we expect this material could help students to have a better grasp of the solution of partial differential equations related to dynamical systems.
引用
收藏
页码:120 / 132
页数:13
相关论文
共 50 条
  • [21] STATIONARY APPROACHES FOR SOLVING THE SCHRODINGER-EQUATION WITH TIME-DEPENDENT HAMILTONIANS
    YAO, GH
    WYATT, RE
    JOURNAL OF CHEMICAL PHYSICS, 1994, 101 (03): : 1904 - 1913
  • [22] Quantum invariants for solving the time-dependent Schrodinger equation in one dimension
    Li, BZ
    Wang, SE
    Zhang, LY
    Zhang, XD
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1999, 31 (03) : 379 - 382
  • [23] Gradient symplectic algorithms for solving the Schrodinger equation with time-dependent potentials
    Chin, SA
    Chen, CR
    JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (04): : 1409 - 1415
  • [24] PRODUCT FORMULA ALGORITHMS FOR SOLVING THE TIME-DEPENDENT SCHRODINGER-EQUATION
    DERAEDT, H
    COMPUTER PHYSICS REPORTS, 1987, 7 (01): : 1 - 72
  • [25] Symplectic splitting operator methods for the time-dependent Schrodinger equation
    Blanes, Sergio
    Casas, Fernando
    Murua, Ander
    JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (23):
  • [26] Block-centered finite difference methods for parabolic equation with time-dependent coefficient
    Hongxing Rui
    Hao Pan
    Japan Journal of Industrial and Applied Mathematics, 2013, 30 : 681 - 699
  • [27] Solution of the time-dependent Schrodinger equation using a basis in time
    Weatherford, CA
    Red, E
    Wynn, A
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2002, 592 : 47 - 51
  • [28] Block-centered finite difference methods for parabolic equation with time-dependent coefficient
    Rui, Hongxing
    Pan, Hao
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2013, 30 (03) : 681 - 699
  • [29] A finite-difference method for the one-dimensional time-dependent Schrodinger equation on unbounded domain
    Han, HD
    Jin, JC
    Wu, XN
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (8-9) : 1345 - 1362
  • [30] Solving the Nonlinear Schrodinger Equation using Cubic B-Spline Interpolation and Finite Difference Methods
    Ahmad, Azhar
    Azmi, Amirah
    Abd Majid, Ahmad
    Abd Hamid, Nur Nadiah
    PROCEEDINGS OF THE 24TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM24): MATHEMATICAL SCIENCES EXPLORATION FOR THE UNIVERSAL PRESERVATION, 2017, 1870