Solving the time-dependent Schrodinger equation using finite difference methods

被引:0
|
作者
Becerril, R. [1 ]
Guzman, F. S. [1 ]
Rendon-Romero, A. [2 ]
Valdez-Alvarado, S. [1 ]
机构
[1] Univ Michoacana, Inst Fis & Matemat, Morelia 58040, Michoacan, Mexico
[2] Univ Michoacana, Fac Ciencias Fisicomatemat, Morelia 58040, Michoacan, Mexico
来源
REVISTA MEXICANA DE FISICA E | 2008年 / 54卷 / 02期
关键词
Finite difference methods; computational techniques; Schroedinger equation;
D O I
暂无
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
We solve the time-dependent Schrodinger equation in one and two dimensions using the finite difference approximation. The evolution is carried out using the method of lines. The illustrative cases include: the particle in a box and the harmonic oscillator in one and two dimensions. As non-standard examples we evolve two solitons and show the time-dependent solitonic behavior in one dimension and the stabilization of an atomic gas model in two dimensions. The codes used to generate the results in this manuscript are freely available under request, and we expect this material could help students to have a better grasp of the solution of partial differential equations related to dynamical systems.
引用
收藏
页码:120 / 132
页数:13
相关论文
共 50 条
  • [1] Multiresolution scheme for Time-Dependent Schrodinger Equation
    Lorin, Emmanuel
    Bandrauk, A. D.
    COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (03) : 626 - 638
  • [2] SOLVING THE TIME-DEPENDENT SCHRODINGER EQUATION WITH ABSORBING BOUNDARY CONDITIONS AND SOURCE TERMS IN MATHEMATICA 6.0
    Dubeibe, F. L.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2010, 21 (11): : 1391 - 1406
  • [3] Comparative study of finite difference methods and pseudo-spectral methods for solving the nonlinear Schrodinger equation in optical fiber
    Ibarra-Villalon, H. E.
    Pottiez, O.
    Gomez-Vieyra, A.
    Lauterio-Cruz, J. P.
    PHYSICA SCRIPTA, 2023, 98 (06)
  • [4] Some finite difference methods for solving linear fractional KdV equation
    Appadu, Appanah Rao
    Kelil, Abey Sherif
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2023, 9
  • [5] A Parallel Code for Solving the Molecular Time Dependent Schrodinger Equation in Cartesian Coordinates
    Suarez, J.
    Stamatiadis, S.
    Farantos, S. C.
    Lathouwers, L.
    COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING, VOL 2: ADVANCES IN COMPUTATIONAL SCIENCE, 2009, 1148 : 241 - 245
  • [6] Combined R-matrix eigenstate basis set and finite-difference propagation method for the time-dependent Schrodinger equation: The one-electron case
    Nikolopoulos, L. A. A.
    Parker, J. S.
    Taylor, K. T.
    PHYSICAL REVIEW A, 2008, 78 (06)
  • [7] High-order finite difference method for the Schrodinger equation on deforming domains
    Rydin, Ylva Ljungberg
    Mattsson, Ken
    Werpers, Jonatan
    Sjoqvist, Erik
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 443
  • [8] Finite difference scheme for a high order nonlinear Schrodinger equation with localized damping
    Cavalcanti, Marcelo M.
    Correa, Wellington J.
    Sepulveda C, Mauricio A.
    Vejar Asem, Rodrigo
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2019, 64 (02): : 161 - 172
  • [9] Calculation and Conservation of Probability and Energy in the Numerical Solution of the Schrodinger Equation With the Finite- Difference Time-Domain Method
    Bekmambetova, Fadime
    Triverio, Piero
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2024, 72 (04) : 2110 - 2129
  • [10] A new analysis of stability and convergence for finite difference schemes solving the time fractional Fokker-Planck equation
    Jiang, Yingjun
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (3-4) : 1163 - 1171