Oligosaccharide Binding and Thermostability of Two Related AA9 Lytic Polysaccharide Monooxygenases

被引:19
作者
Tandrup, Tobias [1 ]
Tryfona, Theodora [2 ]
Frandsen, Kristian Erik Hopfner [1 ,3 ]
Johansen, Katja Salomon [4 ]
Dupree, Paul [2 ]
Lo Leggio, Leila [1 ]
机构
[1] Univ Copenhagen, Dept Chem, DK-2100 Copenhagen, Denmark
[2] Univ Cambridge, Dept Biochem, Cambridge CB2 1QW, England
[3] Aix Marseille Univ, Biodiversite & Biotechnol Fong BBF, INRAE, F-13288 Marseille, France
[4] Univ Copenhagen, Dept Geosci & Nat Resource Management, DK-1958 Frederiksberg, Denmark
关键词
DEGRADATION; VALIDATION; CELLULOSE; CLEAVAGE;
D O I
10.1021/acs.biochem.0c00312
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that cleave polysaccharide substrates oxidatively. First discovered because of their action on recalcitrant crystalline substrates (chitin and cellulose), a number of LPMOs are now reported to act on soluble substrates, including oligosaccharides. However, crystallographic complexes with oligosaccharides have been reported for only a single LPMO so far, an enzyme from the basidiomycete fungus Lentinus similis (LsAA9_A). Here we present a more detailed comparative study of LsAA9_A and an LPMO from the ascomycete fungus Collariella virescens (CvAA9_A) with which it shares 41.5% sequence identity. LsAA9_A is considerably more thermostable than CvAA9_A, and the structural basis for the difference has been investigated. We have compared the patterns of oligosaccharide cleavage and the patterns of binding in several new crystal structures explaining the basis for the product preferences of the two enzymes. Obtaining structural information about complexes of LPMOs with carbohydrates has proven to be very difficult in general judging from the structures reported in the literature thus far, and this can be attributed only partly to the low affinity for small substrates. We have thus evaluated the use of differential scanning fluorimetry as a guide to obtaining complex structures. Furthermore, an analysis of crystal packing of LPMOs and glycoside hydrolases corroborates the hypothesis that active site occlusion is a very significant problem for LPMO-substrate interaction analysis by crystallography, due to their relatively flat and extended substrate binding sites.
引用
收藏
页码:3347 / 3358
页数:12
相关论文
共 54 条
[1]  
Bissaro B, 2017, NAT CHEM BIOL, V13, P1123, DOI [10.1038/NCHEMBIO.2470, 10.1038/nchembio.2470]
[2]   Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content [J].
Cannella, David ;
Hsieh, Chia-wen C. ;
Felby, Claus ;
Jorgensen, Henning .
BIOTECHNOLOGY FOR BIOFUELS, 2012, 5
[3]   Lytic Polysaccharide Monooxygenases in Enzymatic Processing of Lignocellulosic Biomass [J].
Chylenski, Piotr ;
Bissaro, Bastien ;
Sorlie, Morten ;
Rohr, Asmund K. ;
Varnai, Aniko ;
Horn, Svein J. ;
Eijsink, Vincent G. H. .
ACS CATALYSIS, 2019, 9 (06) :4970-4991
[4]   Interactions of a fungal lytic polysaccharide monooxygenase with β-glucan substrates and cellobiose dehydrogenase [J].
Courtade, Gaston ;
Wimmer, Reinhard ;
Rohr, Asmund K. ;
Preims, Marita ;
Felice, Alfons K. G. ;
Dimarogona, Maria ;
Vaaje-Kolstad, Gustav ;
Sorlie, Morten ;
Sandgren, Mats ;
Ludwig, Roland ;
Eijsink, Vincent G. H. ;
Aachmann, Finn Lillelund .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (21) :5922-5927
[5]  
Couturier M, 2018, NAT CHEM BIOL, V14, P306, DOI [10.1038/nchembio.2558, 10.1038/NCHEMBIO.2558]
[6]   On the functional characterization of lytic polysaccharide monooxygenases (LPMOs) [J].
Eijsink, Vincent G. H. ;
Petrovic, Dejan ;
Forsberg, Zarah ;
Mekasha, Sophanit ;
Rohr, Asmund K. ;
Varnai, Aniko ;
Bissaro, Bastien ;
Vaaje-Kolstad, Gustav .
BIOTECHNOLOGY FOR BIOFUELS, 2019, 12 (1)
[7]   Coot:: model-building tools for molecular graphics [J].
Emsley, P ;
Cowtan, K .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2126-2132
[8]   A Brief and Informationally Rich Naming System for Oligosaccharide Motifs of Heteroxylans Found in Plant Cell Walls [J].
Faure, Regis ;
Courtin, Christophe M. ;
Delcour, Jan A. ;
Dumon, Claire ;
Faulds, Craig B. ;
Fincher, Geoffrey B. ;
Fort, Sebastien ;
Fry, Stephen C. ;
Halila, Sami ;
Kabel, Mirjam A. ;
Pouvreau, Laurice ;
Quemener, Bernard ;
Rivet, Alain ;
Saulnier, Luc ;
Schols, Henk A. ;
Driguez, Hugues ;
O'Donohue, Michael J. .
AUSTRALIAN JOURNAL OF CHEMISTRY, 2009, 62 (06) :533-537
[9]   AA16, a new lytic polysaccharide monooxygenase family identified in fungal secretomes [J].
Filiatrault-Chastel, Camille ;
Navarro, David ;
Haon, Mireille ;
Grisel, Sacha ;
Herpoel-Gimbert, Isabelle ;
Chevret, Didier ;
Fanuel, Mathieu ;
Henrissat, Bernard ;
Heiss-Blanquet, Senta ;
Margeot, Antoine ;
Berrin, Jean-Guy .
BIOTECHNOLOGY FOR BIOFUELS, 2019, 12 (1)
[10]   Polysaccharide degradation by lytic polysaccharide monooxygenases [J].
Forsberg, Zarah ;
Sorlie, Morten ;
Petrovic, Dejan ;
Courtade, Gaston ;
Aachmann, Finn L. ;
Vaaje-Kolstad, Gustav ;
Bissaro, Bastien ;
Rohr, Asmund K. ;
Eijsink, Vincent G. H. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2019, 59 :54-64