Dynamic modeling of a PEM fuel cell with temperature effects

被引:46
作者
Tiss, Faysal [1 ]
Chouikh, Ridha [1 ]
Guizani, Amenallah [1 ]
机构
[1] Thermal Proc Lab Res & Technol Ctr Energy, Hammam Lif 2050, Tunisia
关键词
PEM fuel cells; Dynamic modeling; Equivalent circuit; Heat transfer; EXCHANGE MEMBRANE; PERFORMANCE; VALIDATION; MANAGEMENT; SIMULATION; WATER;
D O I
10.1016/j.ijhydene.2012.09.101
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the aim of dynamic simulation and control, a new non-linear state-space dynamic non-isothermal polymer electrolyte membrane fuel cell (PEMFC) model is developed in this paper. This mathematical model is developed based on mass and energy equation. The present model takes in account subsequent factors as the effects of charge double layer capacitance, the geometrical capacity and the effect of temperature gradient. In this paper, the authors propose a combination of several dynamic equations to study the effect of suddenly variation of some operating parameters like load resistance, gas pressure and gas temperature input. The results are compared to those of an isothermal model. This model will be extremely functional for the best possible design and real-time control of PEMFC systems. The present model is executed in MATHCAD software and the fuel cell is symbolized by an equivalent circuit which incorporates gas diffusion layer, membrane and electrodes. The analysis results show that the main elements that influence the performance of the cell are load resistance and functioning temperature. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:8532 / 8541
页数:10
相关论文
共 18 条
[1]  
AMPHLETT JC, 1995, J ELECTROCHEM SOC, V142, P1, DOI 10.1149/1.2043866
[2]   Analysis of the water and thermal management in proton exchange membrane fuel cell systems [J].
Bao, Cheng ;
Ouyang, Minggao ;
Yi, Baolian .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (08) :1040-1057
[3]   A new approach to empirical electrical modelling of a fuel cell, an electrolyser or a regenerative fuel cell [J].
Busquet, S ;
Hubert, CE ;
Labbé, J ;
Mayer, D ;
Metkemeijer, R .
JOURNAL OF POWER SOURCES, 2004, 134 (01) :41-48
[4]   Development and experimental validation of a PEM fuel cell dynamic model [J].
del Real, Alejandro J. ;
Arce, Alicia ;
Bordons, Carlos .
JOURNAL OF POWER SOURCES, 2007, 173 (01) :310-324
[5]   Dynamic modeling and water management in proton exchange membrane fuel cell [J].
Haddad, Ahmad ;
Bouyekhf, Rachid ;
El Moudni, Abdellah .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (21) :6239-6252
[6]   Three dimensional numerical investigations for the effects of gas diffusion layer on PEM fuel cell performance [J].
Inamuddin ;
Cheema, Taqi Ahmad ;
Zaidi, S. M. J. ;
Rahman, S. U. .
RENEWABLE ENERGY, 2011, 36 (02) :529-535
[7]   A single-phase, non-isothermal model for PEM fuel cells [J].
Ju, H ;
Meng, H ;
Wang, CY .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2005, 48 (07) :1303-1315
[8]   Performance of an anion exchange membrane in association with cathodic parameters in a dual chamber microbial fuel cell [J].
Pandit, Soumya ;
Ghosh, Souparno ;
Ghangrekar, M. M. ;
Das, Debabrata .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (11) :9383-9392
[9]   Mathematical analysis of planar solid oxide fuel cells [J].
Pramuanjaroenkij, Anchasa ;
Kakac, Sadik ;
Zhou, Xiang Yang .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (10) :2547-2565
[10]   Dynamic modeling of solid oxide fuel cell: The effect of diffusion and inherent impedance [J].
Qi, YT ;
Huang, B ;
Chuang, KT .
JOURNAL OF POWER SOURCES, 2005, 150 :32-47