Ultrafast Sodium Intercalation Pseudocapacitance in MoS2 Facilitated by Phase Transition Suppression

被引:13
作者
Cook, John B. [1 ,2 ]
Ko, Jesse S. [3 ,4 ]
Lin, Terri C. [1 ]
Robertson, Daniel D. [1 ]
Kim, Hyung-Seok [3 ]
Yan, Yan [1 ]
Yao, Yiyi [1 ]
Dunn, Bruce S. [3 ,5 ]
Tolbert, Sarah H. [1 ,3 ,5 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] Xer Adv Battery Corp, 3100 Res Blvd Suite 320, Kettering, OH 45420 USA
[3] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[4] Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA
[5] Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
MoS2; phase transition suppression; pseudocapacitance; Na-ion; fast-charging; nanocrystals; X-RAY-DIFFRACTION; LITHIUM INTERCALATION; LI-INTERCALATION; ENERGY-STORAGE; CHARGE STORAGE; ION; VOLTAMMETRY; ELECTRODES; CHEMISTRY; INSERTION;
D O I
10.1021/acsaem.2c02368
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium-ion intercalation pseudocapacitance promises fast energy storage that is cheaper than lithium-ion-based systems. MoS2 is an attractive sodium-ion host due to its large van der Waals gaps, high Na+ mobility, and high electronic conductivity in the 1T phase. In this paper, we have quantified high levels (>90%) of pseudocapacitive charge storage in 30 mu m thick MoS2 nanocrystal-based composite electrodes, which can be charged to almost 50% of their 1C capacity in just under 40 s. In addition, very little decay is observed in the delivered capacity (retention of 97%) after 1800 cycles at a rate of 20C. Synchrotron-based operando X-ray diffraction shows that the pseudocapacitive performance is enabled through suppression of the trigonal 1T-MoS2 to triclinic NaxMoS2 phase transition in MoS2 nanocrystals during charge-discharge.
引用
收藏
页码:99 / 108
页数:10
相关论文
共 55 条
[1]   INNER AND OUTER ACTIVE SURFACE OF RUO2 ELECTRODES [J].
ARDIZZONE, S ;
FREGONARA, G ;
TRASATTI, S .
ELECTROCHIMICA ACTA, 1990, 35 (01) :263-267
[2]   Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J].
Augustyn, Veronica ;
Simon, Patrice ;
Dunn, Bruce .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1597-1614
[3]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/nmat3601, 10.1038/NMAT3601]
[4]   Effective Liquid-Phase Exfoliation and Sodium Ion Battery Application of MoS2 Nanosheets [J].
Bang, Gyeong Sook ;
Nam, Kwan Woo ;
Kim, Jong Yun ;
Shin, Jongwoo ;
Choi, Jang Wook ;
Choi, Sung-Yool .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (10) :7084-7089
[5]   NOTE ON A METHOD TO INTERRELATE INNER AND OUTER ELECTRODE AREAS - REPLY [J].
BARONETTO, D ;
KRSTAJIC, N ;
TRASATTI, S .
ELECTROCHIMICA ACTA, 1994, 39 (16) :2359-2362
[6]   Intercalation chemistry of molybdenum disulfide [J].
Benavente, E ;
Santa Ana, MA ;
Mendizábal, F ;
González, G .
COORDINATION CHEMISTRY REVIEWS, 2002, 224 (1-2) :87-109
[7]   Pseudocapacitive Contributions to Charge Storage in Highly Ordered Mesoporous Group V Transition Metal Oxides with Iso-Oriented Layered Nanocrystalline Domains [J].
Brezesinski, Kirstin ;
Wang, John ;
Haetge, Jan ;
Reitz, Christian ;
Steinmueller, Sven O. ;
Tolbert, Sarah H. ;
Smarsly, Bernd M. ;
Dunn, Bruce ;
Brezesinski, Torsten .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (20) :6982-6990
[8]   High-Performance Sodium-Ion Pseudocapacitors Based on Hierarchically Porous Nanowire Composites [J].
Chen, Zheng ;
Augustyn, Veronica ;
Jia, Xilai ;
Xiao, Qiangfeng ;
Dunn, Bruce ;
Lu, Yunfeng .
ACS NANO, 2012, 6 (05) :4319-4327
[9]  
Conway B. E., 2013, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications
[10]   TRANSITION FROM SUPERCAPACITOR TO BATTERY BEHAVIOR IN ELECTROCHEMICAL ENERGY-STORAGE [J].
CONWAY, BE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (06) :1539-1548