Low-Power Artificial Neurons Based on Ag/TiN/HfAlOx/Pt Threshold Switching Memristor for Neuromorphic Computing

被引:95
|
作者
Lu, Yi-Fan [1 ]
Li, Yi [1 ]
Li, Haoyang [1 ]
Wan, Tian-Qing [1 ]
Huang, Xiaodi [1 ]
He, Yu-Hui [1 ]
Miao, Xiangshui [1 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Threshold switch; low power; artificial neuron; leaky-integrate-and-fire; SPIKING NEURONS; NEURAL-NETWORKS;
D O I
10.1109/LED.2020.3006581
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Threshold switching (TS) devices are promising candidates to build highly compact and energy efficient artificial neurons. Here, we present a Pt/Ag/TiN/HfAlOx/Pt (PATHP) device with excellent TS characteristics, including a large selectivity(10(10)), a wide range of operation current from 10 nA to 1 mA, an extremely steep slope (0.63 mV/dec) and fast turn-on speed (50 ns). The stable TS performance can be ascribed to the introduction of TiN buffer layer and the alternate atomic layer deposited HfAlOx layer. Further, we experimentally demonstrate the functions of leaky-integrate-and-fire neurons with low power feature based on a RC circuit and a single device, respectively, which are essential for constructing spiking neuromorphic systems.
引用
收藏
页码:1245 / 1248
页数:4
相关论文
共 50 条
  • [1] Low-power perovskite-based threshold switching memristor for artificial nociceptor
    Li, Yingchen
    Li, Jiacheng
    Ni, Jian
    Zhang, Jianjun
    Cai, Hongkun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1000
  • [2] Low-Power Memristor for Neuromorphic Computing: From Materials to Applications
    Zhipeng Xia
    Xiao Sun
    Zhenlong Wang
    Jialin Meng
    Boyan Jin
    Tianyu Wang
    Nano-Micro Letters, 2025, 17 (1)
  • [3] A low-power reconfigurable memristor for artificial neurons and synapses
    Yan, Xiaobing
    Shao, Yiduo
    Fang, Ziliang
    Han, Xu
    Zhang, Zixuan
    Niu, Jiangzhen
    Sun, Jiameng
    Zhang, YinXing
    Wang, Lulu
    Jia, Xiaotong
    Zhao, Zhen
    Guo, Zhenqiang
    APPLIED PHYSICS LETTERS, 2023, 122 (04)
  • [4] Artificial Neurons Based on a Threshold Switching Memristor with Ultralow Threshold Voltage
    Liang, Huaxian
    Jiang, Ting
    Wang, Yu
    An, Le
    Bian, Lanxin
    Zhou, Jiacheng
    Zhang, Baolin
    ACS APPLIED ELECTRONIC MATERIALS, 2025, 7 (07) : 3019 - 3029
  • [5] Threshold switching memristor-based stochastic neurons for probabilistic computing
    Wang, Kuan
    Hu, Qing
    Gao, Bin
    Lin, Qi
    Zhuge, Fu-Wei
    Zhang, Da-You
    Wang, Lun
    He, Yu-Hui
    Scheicher, Ralph H.
    Tong, Hao
    Miao, Xiang-Shui
    MATERIALS HORIZONS, 2021, 8 (02) : 619 - 629
  • [6] A low power flexible halide perovskite-based threshold switching memristor as an artificial nociceptor
    Tang, Lingzhi
    Wang, Jiaan
    Huang, Yang
    Wang, Hengshan
    Wang, Chen
    Yang, Yiming
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (10) : 3622 - 3631
  • [7] Biopolymer based artificial synapses enable linear conductance tuning and low-power for neuromorphic computing
    Zhang, Ke
    Xue, Qi
    Zhou, Chao
    Mo, Wanneng
    Chen, Chun-Chao
    Li, Ming
    Hang, Tao
    NANOSCALE, 2022, 14 (35) : 12898 - 12908
  • [8] Forming-free Pt/Al2O3/HfO2/HfAlOx/TiN memristor with controllable multilevel resistive switching and neuromorphic characteristics for artificial synapse
    Ismail, Muhammad
    Mahata, Chandreswar
    Kim, Sungjun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 892
  • [9] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
    连晓娟
    付金科
    高志瑄
    顾世浦
    王磊
    Chinese Physics B, 2023, (01) : 525 - 530
  • [10] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
    Lian, Xiao-Juan
    Fu, Jin-Ke
    Gao, Zhi-Xuan
    Gu, Shi-Pu
    Wang, Lei
    CHINESE PHYSICS B, 2023, 32 (01)